期刊文献+

复杂展开路径太阳翼地面零重力试验技术的研究

Research on Zero Gravity Test Technology of Solar Array with Complex Deployment Path
下载PDF
导出
摘要 太阳翼装配、试验需在零重力环境下进行。某遥感卫星太阳翼展开过程太阳板质心运动轨迹近似大半圆弧线,属于复杂的展开路径,其重力卸载难度较大。针对此问题,设计了一套气浮式零重力补偿设备,采用一套分跨式气浮装置和气浮平台解决了复杂展开路径太阳翼零重力卸载的难题,分跨式的设计也解决了太阳翼收拢后气浮装置干涉的问题;设计了一套可上下调节,锁紧气管的气管固定装置解决了展开试验时气管与太阳翼联动机构钩挂的问题。结果表明采用此种装配手段,可有效地开展此种复杂展开路径太阳翼在地面的装配、展开试验、基频测试工作,保证了太阳翼的装配技术指标。 The assembly and test of the solar array must be carried out in a zero gravity environment. During the deployment of a solar array, the solar array’s center of mass motion trajectory is similar to a semicircular arc, which is a complex deployment path, and its gravity unloading is difficult. In this paper, a set of air-floating zero-gravity compensation equipment is designed, and a set of split-span air-floating device and air-floating platform are adopted to solve the problem of zero-gravity unloading of the solar array. The split-span design also solves the problem of interference after the solar array is folded. A set of tracheal fixing devices that can be adjusted up and down to lock the trachea are designed to solve the problem of the trachea and the solar array linkage mechanism hooking during the deployment test. The results show that the using of this assembly method not only can effectively carry out the assembly and deployment test, and fundamental frequency test, but also the assembly technical indicators of the solar array can be well guaranteed.
作者 胡亚航 程泽 王国星 臧梓轶 段萍 王帅 Hu Yahang;Cheng Ze;Wang Guoxing;Zang Ziyi;Duan Ping;Wang Shuai(Beijing Spacecraft Co.,Ltd.,Beijing 100190)
出处 《航天制造技术》 2020年第5期41-45,共5页 Aerospace Manufacturing Technology
关键词 复杂展开路径太阳翼 零重力 气浮展开 分跨式气浮装置 气管固定装置 solar array with complex deployment path zero gravity air-floating deployment split-span air-floating device tracheal fixing device
  • 相关文献

参考文献6

二级参考文献29

  • 1屈斌,王启,王海平,贾晓鹏.失重飞机飞行方法研究[J].飞行力学,2007,25(2):65-67. 被引量:18
  • 2Sullivan B R, Akin D L. A Survey of Serviceable Spacecraft Failures [C]. AIAA Space- Conference and Exposition, Reston, VA, USA : AIAA ,2001:4531-4540.
  • 3Carignan C R,Akin D L. The Reaction Stabilization of On-orbit Robots [ J ]. IEEE Control Systems Magazine, 2000,20 ( 6 ) : 19-33.
  • 4White G C, Xu Y S. Active Vertical-direction Gravity Compensation System [ J ]. IEEE Transactions on Instru- mentation and Measurement, 1994,43 ( 6 ) :786-792.
  • 5Xu Y S,Brown H B,Friedman M J. Control System of the Self-mobile Space Manipulator[ J ]. IEEE Transactions on Control Systems Technology, 1994,2 ( 3 ) : 207-219.
  • 6Sato Y,Ejiri A,Iida Y, et al. Micro-G Emulation System Using Constant-tension Suspension for a Space Manipu- lator [ C ]//Proceedings of the IEEE International Con- ference on Robotics and Automation. Piscataway, N J,USA: IEEE ,1991:1893-1900.
  • 7Koningstein R,Cannon R H J. Experiments with Model- simplified Computed-torque Manipulator Controllers for Free-flying Robots [ J ]. Journal of Guidance, Control, and Dynamics, 1995,18 ( 6 ) : 1387-1391.
  • 8Robertson A,Inalhan G, How J P. Space Craft Formation Flying Control Design for the Orion Mission [ C ]. AIAA Guidance, Navigation, and Control Conference. Re- ston, VA, USA : AIAA, 1999 : 1562-575.
  • 9Yoshida K. Experimental Study on the Dynamics and Control of a Space Robot with Experimental Free-floating Robot Satellite (FFORTS) Simulators [ J ]. Advanced Robotics, 1995, 9(6) :583-602.
  • 10章令晖,夏英伟,韩宇,房海军,周宏志.复合材料太阳翼压紧框架工艺研究[J].航天制造技术,2007(4):9-12. 被引量:1

共引文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部