摘要
改进了的李群分析方法用于积分-偏微分方程(群体平衡方程)十分复杂,问题的本质在于求解积分-偏微分方程的决定方程既棘手又困难,探究决定方程的方法依赖于原积分-偏微分方程本身的结构特征和性质.相反,采用伸缩变换群分析方法探索积分-偏微分方程的自相似解既简单又方便.论文利用伸缩变换群分析方法研究了积分-偏微分方程,获得了积分-偏微分方程的显式真实解、自相似解和约化的积分-常微分方程.
An application of the Lie group analysis method as developed for integrodifferential equations(population balance equation)is quite complicated,due to the fact that solving the determining equations of integro-differential equations is typically difficult.Even more,the ways of solving determining equations depend on the original integrodifferential equations studied.Conversely,for simplicity and convenience,the study of new integro-differential equations is started by considering the self-similar solutions using a scaling group.Population balance equations considered in the present paper involve both a partial differential equation and integro-differential equation.All explicit physical solutions and self-similar solutions were presented by using the scaling group analysis method.Analysis of the reduced equations was also provided.
作者
林府标
张千宏
LIN FUBIAO;ZHANG QIANHONG(School of Mathematics and Statistics,Guizhou University of Finance and Economics,Guiyang 550025,China)
出处
《应用数学学报》
CSCD
北大核心
2020年第5期833-852,共20页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(11761018,11361012)
贵州省科技计划基金项目(黔科合基础[2019]1051)
贵州省科技厅科学技术基金([2020]1Y008)
贵州省教育厅青年科技人才成长项目(黔教合KY字[2017]150)
2018年度贵州财经大学校级科研基金项目资助(2018XYB04)
贵州财经大学创新探索及学术新苗项目(黔科合平台人才[2017]5736-020)。
关键词
群体平衡方程
积分-偏微分方程
伸缩变换群
自相似解
population balance equation
integro-differential equation
scaling group analysis
self-similar solution