期刊文献+

具有非单调反馈的随机Mackey-Glass造血模型 被引量:1

Stochastic Mackey-Glass Model of Hematopoiesis with Non-monotone Feedback
原文传递
导出
摘要 考虑到损坏率受到白噪声的干扰,本文介绍了一类具有非单调反馈的随机Mackey-Glass造血模型,用于描述其在随机环境中的动力学行为.首先,研究了在非负初值条件下全局正解的存在性和唯一性.接着,估计了解的平均最终有界性和Lyapunov指数.最后,给出了一个实例以及数值模拟以验证理论分析结果. Considering that the destruction rate is perturbed by white noises,we introduce a stochastic Mackey-Glass model of hematopoiesis with non-monotone feedback to describe its dynamics behaviors in random environments.Firstly,we study the existence and uniqueness of the global positive solution with the nonnegative initial condition.Next,we estimate its ultimate boundedness in mean and Lyapunov exponent.Finally,an example with its numerical simulations is carried out to validate the analytical results.
作者 王文涛 刘福窑 陈娓 WANG WENTAO;LIU FUYAO;CHEN WEI(School of Mathematics,Physics and Statistics,Shanghai University of Engineering Science,Shanghai 201620,China;School of Statistics and Mathematics,Shanghai Lixin University of Accounting and Finance,Shanghai 201209,China)
出处 《应用数学学报》 CSCD 北大核心 2020年第5期865-874,共10页 Acta Mathematicae Applicatae Sinica
基金 浙江省自然科学基金(LY18A010019)资助。
关键词 布朗运动 Mackey-Glass模型 非单调反馈 最终有界性 Brownian motion Mackey-Glass model non-monotone feedback ultimate boundedness
  • 相关文献

参考文献4

二级参考文献19

  • 1翁佩萱,梁妙莲.一个造血模型周期解的存在性及其性态[J].应用数学,1995,8(4):434-439. 被引量:12
  • 2Kuang,Y., Feldstein, A.,Boundedness of solutions of a nonlinear nonautonomous neutral delay equation, J.Math.Anal. Appl., 1991,156,293-304.
  • 3Gopalsamy, K., He,X., Wen,L., On a periodic neutral logistic equation, GlasgowMath.J.,1991, 33:281-286.
  • 4Gopalsamy, K., Zhang,B.G., On a neutral delay logistic equation, Dynamics StabilitySystems, 1988,2:183-195.
  • 5Pielou,E.C., Mathematics Ecology, New York:Wiley-Interscience, 1977.
  • 6Kuang,Y. Delay Differential Equations with Applications in Population Dynamics, NewYork: Academic Press, 1993.
  • 7Fang Hui, Li Jibin, On the existence of periodic solutions of a neutral delay modelof single-species population growth, J.Math. Anal. Appl., 2001,259:8-17.
  • 8Gaines, R.E., Mawhin, J.L., Coincidence degree and nonlinear differentialequations, Lectures Notes in Mathematics, Vol.586,Berlin: Springer-Verlag,1977.
  • 9Liu,Z.D., Mao,Y.P., Existence theorem for periodic solutions of higher ordernonlinear differential equations, J.Math.Anal.Appl.,1997,216:481-490.
  • 10Petryshyn, W.V., Yu, Z.S.,Existence theorem for periodic solutions of higher ordernonlinear periodic boundary value problems, Nonlinear Anal., 1982,6(9):943-969.

共引文献36

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部