期刊文献+

一类具有两种控制策略的SIR非连续传染病模型动力学研究 被引量:6

Dynamical Study on a Class of SIR Discontinuous Epidemic Model with two Control Strategies
原文传递
导出
摘要 本文分别以引起媒体预警的感染者数量及实施隔离措施的易感者数量为阈值,建立了一类具有两种控制策略的SIR传染病模型.采用Filippov凸组合等方法,系统地研究了具有两个正交不连续界面的微分方程系统在不同阈值条件下的动力学性质,如滑动区域,真、假平衡点的存在性,伪平衡点的存在性和稳定性及模型的全局渐近稳定性.最后,通过数值模拟验证所得结论. Considering the number of infected individuals warned by media and the number of susceptible individuals triggering isolation as two different thresholds,this paper formulates a kind of SIR epidemical model with two control strategies.The dynamic properties of differential equation system with two orthogonal discontinuous interfaces under different threshold conditions,such as the existence of sliding region,true and false equilibrium,the existence and stability of pseudo equilibrium and the global asymptotic stability of the model,are systematically studied by using Filippov convex combination method,etc.Finally,numerical simulations are carried out to support the conclusions.
作者 张仲华 张靖茹 刘叶玲 ZHANG ZHONGHUA;ZHANG JINGRU;LIU YELING(School of Science,Xi’an University of Science and Technology,Shanxi 710054,China)
出处 《应用数学学报》 CSCD 北大核心 2020年第5期897-914,共18页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11201277) 陕西省自然科学基金(2015JM011)资助项目。
关键词 传染病模型 滑模区域 稳定性 阈值策略 epidemic model sliding region stability threshold strategy
  • 相关文献

参考文献3

二级参考文献17

  • 1Czene K, Reilly M, Hall P, Hartman M. A constant risk for familial breast cancer? a popula- tion-based family study[ J ]. Breast Cancer Res, 2009, 11 (3) : R30.
  • 2Meyer-Rienecker H, Buddenhagen F. Incidence of multiple sclerosis: a periodic orstable phe- nomenon[J]. JNeurol, 1988, 235(4) : 241-244.
  • 3Neaigus A, Jenness S M, Hagan H, Murrill C S, Torian L V, Wendel T, Gelpi-Acosta C. Esti- mating HIV incidence and the correlates of recent infection in venue-sampled men who have sex with men in New York city[J]. AIDS Behav, 2012, 16(3) : 515-524.
  • 4Liu R, Wu J, Zhu H. Media/psychological impact on multiple outbreaks of emerging infec- tious diseases[J]. Comput Math Methods Med, 2007, 8(3) : 153-154.
  • 5Xiao D, Ruan S. Global analysis of an epidemic model with nonmonotone incidence rate [ J J. Math Biosci, 2007, 208(2): 419-429.
  • 6Li B, Yuan S, Zhang W. Analysis on an epidemic model with a ratio-dependent nonlinear inci- dence rate[J]. Int JBiomath, 2011,4(2) : 227-239.
  • 7Sun C, Yang W, Arinoa J, Khan K. Effect of media-induced social distancing on disease transmission in a two patch setting[ J]. Math Biosci, 2011, 2:}0(2) : 87-95.
  • 8Cui J, Sun Y, Zhu H. The impact of media on the control of infectious diseases[J]. Journal of Dynamics and Differential Equations, 2008, 20( 1 ) : 31-53.
  • 9Tchuenche J M, Bauch C T. Dynamics of an infectious disease where media coverage influ- ences transmission[ J]. ISRNBiomathematics, 2012, 2012: Article ID 581274, l0 Pages. doi: 10. 5402/2012/581274.
  • 10Zou W, Xie J. An SI epidemic model with nonlinear infection rate and stage structure [J]. Int JBiomath, 2009, 2(1) : 19-27.

共引文献44

同被引文献22

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部