期刊文献+

某些紧致齐性空间上非黎曼的Einstein-Randers度量

Non-Riemannian Einstein-Randers Metrics on Some Compact Homogeneous Spaces
原文传递
导出
摘要 证明了齐性空间E7/SU(6)与E7/SU(2)上存在不变Einstein度量,然后证明了该齐性空间上存在非黎曼的Einstein-Randers度量. The homogeneous spaces E7/SU( 6) and E7/SU( 2) are proved to admit invariant Einstein metrics, and then it’s shown that they admit non-Riemannian Einstein-Randers metrics.
作者 黎小胜 陈超 胡余旺 Li Xiaosheng;Chen Chao;Hu Yuwang(School of Mathematics and Statistics,Xinyang Normal University,Xinyang 464000,China;School of Mathematical Sciences,Nankai University,Tianjin 300071,China)
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第5期45-50,共6页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 the NSFC(11547122) Nanhu Scholars Program for Young Scholars of XYNU。
关键词 EINSTEIN度量 Einstein-Randers度量 齐性流形 Einstein metric Einstein-Randers metric homogeneous manifold
  • 相关文献

参考文献1

二级参考文献13

  • 1Antonelli P L, Ingarden R S, Matsumoto M. The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology. Dordrecht: Kluwer Academic Publishers, 1993.
  • 2Arvanitoyeorgos A, Mori K, Sakane Y. Einstein metrics on compact Lie groups which are not naturally reductive. Geom Dedicata, 2012, 160:261- 285.
  • 3Bao D, Robles C. Ricci and flag curvatures in Finsler geometry. In: Bao D, Bryant R, Chern S S, et al., eds. A Sample of Riemann-Finsler Geometry. Cambridge: Cambridge University Press, 2004, 197-260.
  • 4Bao D, Robles C, Shen Z. Zermelo navigation on Riemannian manifolds. J Differential Geom, 2004, 66:377 435.
  • 5Chen Z, Deng S, Liang K. Einstein-Randers metrics on some homogeneous manifolds. Nonlinear Anal, 2013, 91: 114 -120.
  • 6Deng S, Hou Z. Invariant Randers metric on homogeneous Riemannian manifolds. J Phys A, 2004, 37:4353 -4360; Corrigendum in J Phys A, 2006, 39:5249- 5250.
  • 7Deng S, Hou Z. Homogeneous Einstein-Randers spaces of negative Ricci curvature. C R Math Acad Sci Paris, 2009, 347:1169- 1172.
  • 8Ingarden R S. On physical applications of Finsler geometry. Contemp Math, 1996, 196:213 -223.
  • 9Kimura M. Homogeneous Einstein metrics on certain Kghler C-spaces. In: Recent Topics in Differential and Analytic Geometry, Advanced Studies in Pure Mathematics, vol. 18. Boston: Academic Press, 1990, 303 -320.
  • 10Wang H, Deng S. Some Einstein-Randers metrics on homogeneous spaces. Nonlinear Anal, 2010, 72:440-4414.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部