期刊文献+

基于S-HOG的遥感图像舰船目标检测 被引量:4

Ship Target Detection in Remote Sensing Image Based on S-HOG
下载PDF
导出
摘要 随着高分辨率卫星遥感成像技术的不断发展,可见光遥感图像舰船目标检测成为热门课题,其在军舰探测、精确制导等军用领域以及海面搜救、渔船监测等民用领域具有极其重要的战略意义。针对遥感图像中的舰船检测易受云雾、波浪、岛屿等因素干扰导致虚警率高的问题,提出了基于舰船方向梯度直方图(Ship Histagram of Oriented Gradient,S-HOG)特征的舰船鉴别算法。首先利用异常点检测提取目标候选区域得到可疑目标切片,然后统计其S-HOG特征剔除虚警,从而有效提取真正的舰船目标。实验结果表明,所提算法能在保证高检测率的同时显著降低虚警率,抗干扰能力强,鲁棒性高。 With the continuous development of high-resolution satellite remote sensing imaging technology,ship target detection based on visible remote sensing image has become a hot topic,which is of great strategic significance in military fields such as warship detection,precise guidance,and civilian fields such as sea search and rescue,fishing vessel monitoring,etc.Aiming at the problem that ship detection in remote sensing image is easy to be interfered by cloud,wave,island and other factors,which leads to high false alarm rate,a ship identification algorithm based on the characteristics of ship histogram of oriented gradient(S-HOG)is proposed.Firstly,the candidate region of the target is extracted by abnormal point detection to get the suspicious target slice,and then the S-HOG feature is counted to eliminate the false alarm,so as to effectively extract the real ship target.Experimental results show that the algorithm can significantly reduce the false alarm rate while ensuring high detection rate,and has strong anti-interference ability and high robustness.
作者 丁荣莉 李杰 张曼 刘艳丽 伍伟 DING Rong-li;LI Jie;ZHANG Man;LIU Yan-li;WU Wei(Shanghai Academy of Spaceflight Technology,Shanghai 201109 China)
出处 《计算机科学》 CSCD 北大核心 2020年第S02期248-252,共5页 Computer Science
基金 国家重点研发计划(2017YFB0802000)。
关键词 遥感图像 舰船检测 异常点检测 感兴趣区域 舰船方向梯度直方图 Remote sensing image Ship detection Abnormal point detection Target candidate region Ship histogram of oriented gradient
  • 相关文献

参考文献3

二级参考文献53

  • 1杨斌,赵红漫,赵宗涛,张乐.一个改进的遥感图像目标纹理分类识别算法[J].微电子学与计算机,2004,21(9):111-113. 被引量:5
  • 2储昭亮,王庆华,陈海林,徐守时.基于极小误差阈值分割的舰船自动检测方法[J].计算机工程,2007,33(11):239-241. 被引量:25
  • 3Ruta D, Gabrys B. Classifier selection for majority voting [J]. Information Fusion, 2005, 6: 63-81.
  • 4Crisp D J. The state-of-the-art in ship detection in synthetic aperture radar imagery, DSTO-RR-0272 [R]. Australia: Australian Government, Department of Defense, 2004.
  • 5Buch H, Sharghi E, Guilas C, et al. Enhanced ship detection from overhead imagery [C]// Halvorson C S, Lehrfeld D, Saito T T. Proceedings of SPIE, the International Society for Optical Engineering. Orlando, FL, USA: SHE, 2008, 6945: 1-12.
  • 6Corbane C, Pecoul E, Demagistri L, et al. Fully automated procedure for ship detection using optical satellite imagery [C]// Frouin R J, Andrefouet S, Kawamura H. Proceedings of the SPIE, Remote Sensing of Inland, Coastal, and Oceanic Waters. Noumea, New Caledonia: SPIE, 2008, 7150: 1-13.
  • 7Corbane C, Marre F, Petit M. Using SPOT-5 HRG data in panchromatic mode for operational detection of small ships in tropical area [J]. Sensors, 2008, 8: 2959-2973.
  • 8LIAO Mingsheng, WANG Changcheng, WANG Yong, et al. Using SAR images to detect ships from sea clutter [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 194 - 198.
  • 9Tello M, Martinez C L, Mailorqui J J. A novel algorithm for ship detection in SAR imagery based on the wavelet transform [J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2) : 201-205.
  • 10Wackerman C C, Friedman K S, Pichel W G, et al. Automatic detection of ships in RADARSAT-1 SAR imagery [J]. Canadian Journal of Remote Sensing, 2001, 27(5): 568 - 577.

共引文献44

同被引文献39

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部