期刊文献+

OFDM系统中基于贝叶斯学习的联合稀疏信道估计与数据检测 被引量:1

Joint Sparse Channel Estimation and Data Detection Based on Bayesian Learning in OFDM System
下载PDF
导出
摘要 众所周知,一个宽带无线信道的冲击响应是近似稀疏的,从某种意义上,相对于时延扩展来讲,它仅有一小部分重要的组成成分。针对正交频分复用系统,基于稀疏贝叶斯学习方法,提出两种稀疏信道估计算法:稀疏贝叶斯算法和联合稀疏贝叶斯算法。在信道测量矩阵未知的情况下,所提算法仍能够有效地估计出信道抽头。蒙特卡洛仿真显示,与经典正交匹配追踪算法和变分消息传递算法相比,所提算法在均方误差和误码率相同的情况下,信噪比有3~5 dB的提升。 It is well known that the impulse response of a wide band wireless channel is approximately sparse,in the sense that it has a small number of significant components relative to the channel delay spread.In this paper,two sparse channel estimation algorithms based on spare bayesian learning(SBL)method are proposed for orthogonal frequency division multiplexing(OFDM)system,which we call SBL algorithm and J-SBL algorithm.In the case of unknown channel measurement matrix,the proposed algorithms can still estimate channel taps effectively.Compared with the classical algorithms:orthogonal matching pursuing(OMP)algorithm and variational messaging(VMP)algorithm,montecarlo simulation shows that the proposed algorithms perform better than classical algorithms in terms of the same mean square error and bit error rate and their SNR is improved by 3~5 dB.
作者 陈平 郭秋歌 李攀 崔峰 CHEN Ping;GUO Qiu-ge;LI Pan;CUI Feng(Department of Information Engineering,Jiyuan Vocational and Technical College,Jiyuan,Henan 459000,China;Information Center of Henan Yellow River Bureau,Zhengzhou 450001,China)
出处 《计算机科学》 CSCD 北大核心 2020年第S02期349-353,共5页 Computer Science
基金 河南省高新技术领域科技攻关项目(172102210606) 河南省高等学校重点科研项目(16B520018) 济源市科技攻关项目(16022016)。
关键词 正交频分复用 变分消息传递 正交匹配追踪 稀疏贝叶斯学习 信道估计 近似稀疏 Orthogonal frequency division multiplexing Variational message passing Orthogonal matching pursuit Sparse Baye-sian learning Channel estimation A-sparse
  • 相关文献

参考文献1

二级参考文献12

  • 1Berger C R, Zhou Shenglin, Preisig J C, et al. Sparse channel estimation for muhicarrier underwater acoustic communication: From subspace methods to compressed sensing [J]. IEEE Trans. on Signal Processing, 2010, 58(3) : 1708-1721.
  • 2Berger C R, Zhou Shenglin, Huangjie. Comparison of basis pursuit algorithms for sparse estimation in underwa- ter acoustic OFDM [ C ]//Proc. OCEANS 2010 IEEE- Sydney,2010.
  • 3Pedersen N L, Shutin D, Manchon C N, et al. Sparse es- timation using Bayesian hierarchical prior modeling for re- al and complex models [ J]. Signal Processing, 2015, 115 (6) :94-109.
  • 4Dauwels J. On variational message passing on factor graphs [C]///in IEEE Int. Sym. on Inform. Theory (ISIT'07), 2007,19:2546-2550.
  • 5Xing E, Jordan M, Russell S. A generalized mean field algorithm for variational inference in Exponential families [ J ]. Uncertainty in Artificial Intelligence ,2003,19 ( 12 ) : 583-591.
  • 6Winn J, Bishop C M. Variational message passing [ J ]. Mach. Learn. Res, 2005,6 ( 6 ) :661 - 694.
  • 7Pedersen N L, Manchon C N, Shutin D, et al. Applica- tion of Bayesian Hierarchical prior modeling to sparse channel estimation [ C ]//IEEE International Conference on Communications,2012. ICC' 12,2012:3487-3492.
  • 8Jorgensen B. Statistical Properties of the Generalized In- verse Gaussian Distribution (Lecture Notes in Statistics 9 ) [ M ]. Spring-Verlag, New York lnc, 1982.
  • 9Zhang Chuanzong, Manchon C N, Wang Zhongyong, et al. Message-Passing Receiver for Single Carrier Systems with Frequency-Domain Equalization [ J ]. IEEE Signal Processing Letters, 2015,22(4) : 404-407.
  • 10Frank R Kschischang, Brendan J Frey, Hans-Andrea Locliger. Factor Graphs and the Sum-Product Algorithm [ J]. IEEE Transactions on Information Theory, 2001,47 (2) :498-519.

共引文献4

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部