期刊文献+

面向病灶与其表征关联提取的核医学诊断文本挖掘 被引量:1

Mining Nuclear Medicine Diagnosis Text for Correlation Extraction Between Lesions and Their Representations
下载PDF
导出
摘要 医学影像是现代临床医学疾病诊治不可或缺的重要组成部分,SPECT是功能影像的主要成像技术,广泛应用于肿瘤骨转移等疾病的诊治。SPECT诊断报告文本包含患者个人信息、图像描述和建议性结果等几个方面的信息。为准确提取SPECT核医学骨显像诊断文本中疾病与其表征之间的关联关系,研究并提出基于数据挖掘的核医学文本关联规则挖掘方法。首先,针对核医学诊断文本可能包含的信息冗余、数据缺失及表述不一致等问题,提出SPECT核医学诊断文本的预处理及统一编码方法;然后,应用经典的关联规则挖掘算法Apriori,提出病灶与表征之间关联的挖掘算法;最后,使用一组源自三甲医院核医学科的真实SPECT核医学诊断文本数据,验证了所提出的方法。结果表明,提出的方法客观提取了疾病与其表征之间的关联,获得的客观性评价指标平均值不低于90%。 Medical imaging is an indispensable part of the diagnosis and treatment of diseases in modern clinical medicine.SPECT is the main functional imaging technology and has been widely used in the diagnosis and treatment of diseases such as tumor bone metastasis.The SPECT diagnostic text contains several aspects of patients’personal information,image description,and suggested results.In order to accurately extract the association between disease and its representation in the diagnostic text of SPECT nuclear medicine bone imaging,a method of mining association rules of nuclear medicine text based on data mining is proposed.Firstly,a method of SPECT medical diagnostic text preprocessing and uniform coding is proposed to solve the problems of information redundancy,data loss and inconsistent expression.Secondly,the classical association rule mining algorithm Apriori is applied to propose the association mining algorithm between lesions and their representations.Finally,the proposed method is validated with a set of real-world SPECT nuclear medical diagnostic text data from the department of nuclear medicine in a 3a grade hospitals,and the results show that the proposed method is able to objectively extracted the association between the disease and its representation,and the average objectivity is more than 90%.
作者 韩成成 林强 满正行 曹永春 王海军 王维兰 HAN Cheng-cheng;LIN Qiang;MAN Zheng-xing;CAO Yong-chun;WANG Hai-jun;WANG Wei-lan(School of Mathematics and Computer Science,Northwest Minzu University,Lanzhou 730030,China;Key Laboratory of Streaming Data Computing Technologies and Application,Northwest Minzu University,Lanzhou 730012,China;Department of Nuclear Medicine,Gansu Provincial Hospital,Lanzhou 730020,China;Key Laboratory of China’s Ethnic Languages and Information Technology of Ministry of Education,Northwest Minzu University,Lanzhou 730030,China)
出处 《计算机科学》 CSCD 北大核心 2020年第S02期524-530,共7页 Computer Science
基金 西北民族大学中央高校基本科研业务费专项资金资助研究生项目(Yxm2020101) 国家自然科学基金项目(61562075) 西北民族大学甘肃省一流学科引导专项资金(11080305) 国家民委创新团队计划([2018]98)。
关键词 医学影像 SPECT核医学 诊断文本 文本挖掘 关系规则提取 Medical imaging SPECT nuclear medicine Diagnostic text Text mining Extraction of association rules
  • 相关文献

参考文献2

二级参考文献70

  • 1王浩畅,赵铁军,刘延力,于浩.生物医学文本中命名实体识别的智能化方法[J].北京邮电大学学报,2006,29(z2):54-58. 被引量:2
  • 2王浩畅,赵铁军.基于SVM的生物医学命名实体的识别[J].哈尔滨工程大学学报,2006,27(B07):570-574. 被引量:18
  • 3Cohen, A. M. , W. R. Hersh. A survey of current work in biomedical text mining,[J]. Briefings in Bioinformatics, 2005, 6(1): 57-71.
  • 4Wang, Sammy. Application of Data and Text Mining to Bioinformatics [EB/OL]. http: //cs. uga. edu/-zhiming/datamining/TM, ppt.
  • 5Ananiadou, Sophia, Kell, D. B. Tsujii, Jun-ichi. Text mining and its potential applications in systems biology [J]. Trends in Biotechnology. 2006, 24(12): 571-579.
  • 6Polajnar, T. Survey of Text Mining of Biomedical Corpora [EB/OL]. http: //www. brc. dcs. gla. ac. uk/ lamara,/surveyoftm, pdt.
  • 7Kazama, Jun'ichi, Takaki Makino, et al. 2002. Tuning support vector machines for biomedical named entity recognition [A]. In: Proc. of ACL-02 Workshop on Natural Language Processing in the Biomedical Domain [C]. 2002. 18.
  • 8Lee, Ki-Joong, Young-Sook Hwang, et al. 2003. Two-Phase Biomedical NE Recognition based on SVMs [A]. In: Proc. of ACL-03 Workshop on Natural Language Processing in the Biomedical Domain [C]. 2003. 33-40.
  • 9Tanabe, L. , Wilbur, W. J. Tagging gene and protein names in biomedical text [J]. Bioinformatics, 18(8): 1124-1132.
  • 10Chang J T, Schutze H, Altman R B. GAPSCORE: Finding gene and protein names one word at a time[J]. Bioinformatics, 2004, 20(2): 216 225.

共引文献26

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部