期刊文献+

随机变延迟微分方程平衡方法的收敛性和稳定性 被引量:1

Convergence and Stability of Balanced Methods for Stochastic Variable Delay Differential Equations
下载PDF
导出
摘要 利用全隐式数值方法平衡方法讨论一类随机变延迟微分方程的收敛性和稳定性.首先,证明该方程数值解以1/2阶均方收敛到精确解;其次,证明该方法能保持解析解的均方稳定性;最后,通过数值实验验证理论结果的正确性. We discussed the convergence and stability by using the fully implicit numerical method—balanced methods for a class of stochastic variable delay differential equations.Firstly,we proved that the numerical solution of the equation converged to the exact solution in 1/2 order mean-square.Secondly,we proved that the method could keep the mean-square stability of the analytical solution.Finally,the correctness of the theoretical results was verified by numerical experiments.
作者 包学忠 胡琳 郭慧清 BAO Xuezhong;HU Lin;GUO Huiqing(School of Science,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi Province,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2020年第6期1345-1356,共12页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11801238,11561028) 江西省教育厅青年科学基金(批准号:GJJ170566) 江西理工大学创新创业训练计划项目(批准号:DC2018-071)。
关键词 随机变延迟微分方程 平衡方法 均方收敛性 均方稳定性 stochastic variable delay differential equation balanced method mean-square convergence mean-square stability
  • 相关文献

参考文献3

二级参考文献12

  • 1范振成,刘明珠.随机延迟微分方程数值解的P阶矩指数稳定[J].黑龙江大学自然科学学报,2005,22(4):468-470. 被引量:3
  • 2Friedman A.Stochastic Differential Equations and Applications [M]. New York:Acadcmic Press,1 975.
  • 3Higham D J. An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations [J]. SIAM Review,2001,43(3) :525-5,16.
  • 4Higham D J,MAO Xucrong,YUAN Chcnggui. Almost Sure and Moment Exponential Stability in the Numerical Simulation of Stochastic Differential Equations [J]. SIAM J Numcr Anal,2007,4 5(2.) :592-609.
  • 5MAO Xucrong. Stochatic Differential Equations and Applications [M]. Chichcstcr:Horwood Publishing,1 997.
  • 6MAO Xucrong,YUAN Chcnggui. Stochastic Differential Equations with Markovian Switching [M]. London:Imperial College Press,2006.
  • 7CAO Wanrong,LIU Mingzhu,FAN Zhcnchcng. MS-Stability of the E'ulcr-Maruyama Method for Stochastic Differential Delay Equations [J]. Appl Math Comput,2004,159(1.) :127-135.
  • 8MAO Xucrong. Numerical Solutions of Stochastic Differential Delay Equations under the Generalized Khasminskii-Type Conditions [J]. App Math Comput,2011,217(12) :55 12-5524.
  • 9MAO Xucrong. Numerical Solutions of Stochastic Functional Differential Equations [J]. LMS J Comput Math,2003,6:14 1-161.
  • 10MAO Xucrong,Sabanis S. Numerical Solutions of Stochastic Differential Delay Equations under Local Lipschitz Condition [J]. J Comput Appl Math,2003,151(1):215-227.

共引文献8

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部