摘要
针对分布式光纤振动传感系统在实际应用中需对各个类别的传感事件进行快速准确的识别分类,提出了一种基于时频混合特征提取算法的识别分类方案。该方案采用具有时域特性的过零率和具有频域特性的小波包能量共同作为光纤传感事件的特征表述,而后利用基于径向基神经网络的分类器进行识别分类。经试验测试,该识别方案可以有效的从普通环境噪声中识别出光纤振动传感事件。其中,光纤振动传感事件的平均识别率为94.5%,识别响应时间小于0.3 s。
To accurately and rapidly recognize and classify different kinds of sensing events in distributed fiber optic vibration sensing system,a time-frequency based hybrid feature extraction algorithm has been proposed.In the algorithm,a zero crossing rate based time domain feature vector and a wavelet packet energy based frequency domain feature vector are used as the feature description of the given sensing event.Then,the feature vectors are classified by radial basis function neural network classifier.A series of experimental results show that the vibrations can be accurately recognized from the noise with high efficiency.Specifically,the average identification rate of 94.5%is achieved and the recognition response time can be limited in 0.3 s.
作者
郑来芳
张俊生
梁海坚
吕玉良
Zheng Laifang;Zhang Junsheng;Liang Haijian;Lv Yuliang(Taiyuan Institute of Technology,Taiyuan 030008,China)
出处
《电子测量与仪器学报》
CSCD
北大核心
2020年第9期153-159,共7页
Journal of Electronic Measurement and Instrumentation
基金
山西省高等学校科技创新项目(2019L0929)
山西省重点研发计划(201803D121069)
教育部产学合作协同育人项目(201802022018)
太原工业学院应用型专业建设项目(2018YJ07Z)
太原工业学院教学改革研究项目(2017YJ12)资助。
关键词
光纤振动
传感事件
特征提取
识别分类
fiber optic vibration
sensing event
feature extraction
identification and classification