期刊文献+

n-赋范空间成为k-严格凸的一些充要条件

Some Necessary and Sufficient Conditions for n-Normed Spaces to be k-Strictly Convex Spaces
原文传递
导出
摘要 n-赋范空间是由一般的赋范空间直接推广的一类空间,其凸性研究是Ba nach空间几何理论的主要研究内容之一.研究了n-赋范空间的k-严格凸性问题并利用Banach空间理论的方法,得到了n-赋范空间为k-严格凸的若干特征刻画所得的结论完善了n-赋范空间的k-严格凸性研究. N-normed spaces are some kinds of spaces directly extended by general normed spaces,and the study on convexity of n-normed spaces is one of the main research contents of geometric theory of Banach spaces.In this paper,we study the k-strict convexity of n-normed spaces and obtain some necessary and sufficient conditions for n-normed spaces to be k-strictly convex spaces by using Banach space theory.These results perfect the study of k-strict convexity of n-normed spaces.
作者 乌雅罕 苏雅拉图 Wuyahan;Suyalatu(College of Mathematics Science,Inner Mongolia Normal University,Hohhot 010022,China)
出处 《数学的实践与认识》 北大核心 2020年第21期212-220,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金(11561053) 内蒙古师范大学研究生科研创新基金项目(CXJJS18072)。
关键词 n-赋范空间 k-严格凸性 有界n-线性泛函 N-normed space k-strict convexity n-linear bounded function
  • 相关文献

参考文献9

二级参考文献29

  • 1罗李平.关于K-严格凸Banach空间的注记[J].平原大学学报,2007,24(1):128-129. 被引量:2
  • 2何仁义.K-强凸与局部K一致光滑空间[J].数学杂志,1997,17(2):251-256. 被引量:30
  • 3Ge Xin-Yan.n-oormed spaces[J].Journal of Harbin Normal University:Natural Seience,1985(1):7-14.
  • 4Ge Xin-Yan.The strictly convex and smoothness of n-normed spaces[J].Journal of Harbin Normal University:Natural Science,1985 (3):5-6.
  • 5Jian Bo-Yu.The smoothness of n-Banach spaces and 2-normed spaces[J].Journal of Anhui Normal University:Natural Science,1987 (3):84-87.
  • 6Hahng-Yun,Keonhee Lee,Chun-Gil Par.On the Aleksandrov problem in linear n-homed spaces[J].Nonlinear Analysis,2004(59):1001-1002.
  • 7Zu Hua-Xue,Liu Chuan-Zeng.Fixed points of nonexpensive mappings in strictly convex spaces[J].Journal of Shanghai Normal University:Natural Science,2007,36 (3):30-32.
  • 8Suyalatu.The Strong and Weak Convergence of Sequence in 2-normed Space[J].Journal of Liaoning University:Natural Science,1992,19(1):27-34.
  • 9Qi Xiang-Cheng,Dian Yu-ghang.The Base of Real variable Function and Functional analysis[M].Bejing:High Education Publishing Company,2003.
  • 10Xin Tai-Yu.The Geomtric Theroy of Banach Spaces[M].Shanghai:Huadong Normal University Publishing Company,1986.

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部