期刊文献+

Identifying Conformation States of Polymer through Unsupervised Machine Learning 被引量:3

原文传递
导出
摘要 The study of the critical behavior is important for classifying different configuration states.Recently,machine learning is capable of discriminating polymer states in the presence of human supervision.Here,we introduce an unsupervised approach based on the self-organizing map(SOM)and the autoencoder network to locate critical phase transitions from raw configuration without the necessity for manual feature engineering.High-dimensional configuration data can be encoded to low-dimensional codes by employing neural network of multilayer restrictive Boltzmann machines and the intermediate code can also be reconstructed to high-dimensional input vector.And then the codes are used to cluster different configuration states for polymers adsorbed on the homogeneous and the stripe-patterned surface by the SOM network and K-Means method.This work presents an unusual tool to identify polymer configuration.
出处 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第12期1403-1408,共6页 高分子科学(英文版)
基金 supported by the Natienal Natural Science Foundation of China(No.11775161).
  • 相关文献

参考文献2

二级参考文献1

共引文献4

同被引文献8

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部