期刊文献+

光伏电池与分光耦合系统的热学与电学特性 被引量:1

Thermal and Electrical Properties of Photovoltaic Cell and Spectrum Splitting Coupled System
原文传递
导出
摘要 根据光伏电池与环境之间的牛顿传热以及禁带宽度对温度的依赖特性,获得光伏电池的热学与电学特性。实验研究结果表明,光伏电池的温度高于环境温度,并随着输出电压的增加呈先减小后增加的趋势,与辐射强度呈线性递增的关系;短路电流随着辐射强度的增加而升高,而开路电压随着辐射强度的增加呈先增加后减小的趋势;优化光伏电池输出电压和太阳能辐射强度可以获得最大效率。在AM 1.5G标况下,将部分辐射能输入至集热系统,构造一个分光型光伏-热耦合系统,而该系统可以提高太阳能的利用率。 The thermal and electrical characteristics of a photovoltaic cell are obtained according to the Newton heat transfer between photovoltaic cell and environment,and dependence of band-gap width.This research experimental results show that the temperature of the photovoltaic cell is higher than the ambient temperature,and it first decreases and then increases,which is linearly increasing with the radiation intensity.The short-circuit current increases with the increase of radiation intensity while the open-circuit voltage increases first and then decreases with the increase of radiation intensity.Maximum efficiency can be obtained by optimizing the output voltage of the photovoltaic cells and solar radiation intensity.A spectrum splitting photovoltaic-thermal coupled system is constructed to improve the utilization rate of solar energy by inputting part of the radiant energy under the AM 1.5 G standard condition into the thermal collection system.
作者 廖天军 张辉 Liao Tianjun;Zhang Hui(Department of Physics and Energy Chongqing University of Technology,Chongqing 400054,China;Xi'an Institute of Optics and Precision Mechanics Chinese Academy of Sciences Xi'an,Shaanxi 710119,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第19期49-54,共6页 Laser & Optoelectronics Progress
基金 重庆市教委科学技术研究项目(KJQN201901144) 重庆理工大学科研启动项目(2019ZD22)。
关键词 探测器 光伏电池 不可逆过程 热力学特性 耦合系统 detectors photovoltaic cell irreversible process thermodynamic properties coupled system
  • 相关文献

参考文献5

二级参考文献63

  • 1张富春,邓周虎,阎军锋,张志勇.ZnO电子结构与光学性质的第一性原理计算[J].光学学报,2006,26(8):1203-1209. 被引量:40
  • 2张英,王海容,蒋庄德.半导体吸收式光纤温度传感器的研究[J].压电与声光,2007,29(4):389-391. 被引量:7
  • 3A. Goetzberger, W. Greubel. Solar energy conversion with fluorescent collectors[J]. Appl. Phys. , 1977, 14(2): 123-139.
  • 4W. H. Weber, J. Lambe. Luminescent greenhouse collector for solar radiation [J]. Appl. Opt. , 1976, 15(10) : 2299-2300.
  • 5A. F. Mansour, H. M. A. Killa, S. A. El-Wanees et al.. Laser dyes doped with poly(ST Co-MMA) as fluorescent solar collectors and their field performance [J ]. Polymer Testing, 2005, 4(24): 519-525.
  • 6A. F. Mansour, M. G. E1-Shaarawy, S. M. E1-Bashiret al.. A qualitative study and field performance for a fluorescent solar collector [J]. Polymer Testing, 2002, 3(22): 277-288.
  • 7L. H. Slooff, E. E. Bende, A. R. Burgers et al.. A luminescent solar concentrator with 7.1% power conversion efficiency[J]. Phys. Status SolidiR, 2008, 2(6): 257-259.
  • 8M. J. Currie, J. K. Mapel, T. D. Heideletal.. High-efficiency organic solar concentrators for photovoltaics [J]. Science, 2008, 321(5886) : 226-228.
  • 9S. M. Reda. Stability and photodegradation of phthalocyanines and hematoporphyrin doped PMMA as solar concentrators[J]. Sol. Energy, 2007, 81(6): 755-760.
  • 10M. G. Hyldahl, S. T. Bailey, B. P. Wittmershaus. Photostability and performance of CdSe/ZnS quantum dots in luminescent solar concentrators [J]. Sol. Energy, 2009, 83(4): 566-573.

共引文献28

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部