期刊文献+

低对比度下手机膜缺陷图像的分割研究 被引量:3

Image Segmentation for Mobile Phone Film Defects Under Low Contrast
原文传递
导出
摘要 针对低对比度下手机膜缺陷图像分割较难的问题,提出了一种改进的Retinex增强方法。首先,利用高斯卷积估计缺陷图像的光照分量,获取反射分量;对反射分量进行自适应非线性变换以及对比度受限自适应直方图均衡(CLAHE)修正,提高图像对比度,并利用顶帽变换进一步去除光照背景的影响,实现手机膜缺陷图像的增强。然后,针对最大类间方差(OTSU)算法对缺陷边缘的暗细节分割不完整的问题,引入增强图像的梯度图像,实现手机膜缺陷的有效分割。实验结果表明:在低对比度情况下,相较于原缺陷图像,本文算法处理后的图像的信息熵提升约20%,对比度提升约100%,分割效果较好。 Image segmentation is the focus of mobile phone film defect detection.However,the low contrast of captured images often makes image segmentation difficult.In this regard,this paper proposed an improved Retinex enhancement method.The method used Gaussian convolution to estimate the illumination component of defect image to obtain the reflection component,performed adaptive nonlinear transformation on the reflection component,employed contrast-limited adaptive histogram equalization(CLAHE)correction to improve the contrast,used the top-hat transform to eliminate the influence of lighting background,and enhanced the defect image of the mobile phone film.Then,aiming at the incomplete segmentation of the dark details of the defect edge by Otsu's algorithm,a gradient image of the enhanced image was introduced to achieve effective segmentation of mobile phone film defects images.The experimental results show that in the case of low contrast,compared with the original defect image,the image processed by this algorithm has an improved information entropy of about 20%,a contrast of about 100%,and an excellent segmentation effect.
作者 化春键 郭金花 陈莹 Hua Chunjian;Guo Jinhua;Chen Ying(School of Mechanical Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China;Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment&Technology,Wuxi,Jiangsu 214122,China;School of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第20期123-130,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61573168) 中央高校基本科研业务费专项资金资助(JUSRP11008)。
关键词 图像处理 图像分割 图像增强 RETINEX CLAHE 梯度变换 image processing image segmentation image enhancement Retinex CLAHE gradient transform
  • 相关文献

参考文献8

二级参考文献73

共引文献263

同被引文献30

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部