摘要
针对军用无人飞行器对海上重要舰船合成孔径雷达图像获取困难的问题,提出了一种从单一图像学习图像内部分布的无条件图像生成网络。该网络采用金字塔式多尺度生成对抗网络(GAN)思想,在每一层金字塔中都有一个GAN负责该尺度下图像块的生成和判别,且每个GAN具有相似的结构。生成器前端采用不同大小卷积核连接的Inception模块获取不同尺度下的图像特征,为了充分利用这些特征,加入了残差密集模块;判别器采用马尔科夫判别器的思想,捕捉不同尺度下的图像分布。将所有生成的图像制成数据集用于训练不同的目标检测算法,结果表明,训练后模型的平均精度得到了一定的提升,验证了该网络模型的有效性。
To solve the problem that it is difficult for military unmanned aerial vehicles to acquire synthetic aperture radar images of important ships at sea,this paper introduces an unconditional image generation network which can learn the internal distribution of images from a single image.The network adopts the idea of a pyramid of multi-scale generative adversarial networks(GAN).In each layer of pyramid,there is a GAN responsible for the generation and discrimination of image blocks at this scale,and each GAN has a similar structure.The head of generator contains Inception modules connected with different sizes of convolution kernels to obtain image features at different scales.In order to make full use of these features,a residual dense block is added.The discriminator uses the idea of Markov discriminator to capture images distribution at different scales.All the generated images are made into data sets for training different target detection algorithms,the results show that the average accuracy of the model is improved to a certain extent,which verifies the effectiveness of the network model.
作者
李诗怡
付光远
崔忠马
杨小婷
汪洪桥
陈雨魁
Li Shiyi;Fu Guangyuan;Cui Zhongma;Yang Xiaoting;Wang Hongqiao;Chen Yukui(College of Operational Support,Rocket Force University of Engineering,Xi'an,Shannxi 710025,China;Beijing Institute of Remote Sensing Equipment,Beijing 100854,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2020年第20期167-177,共11页
Laser & Optoelectronics Progress
基金
国家自然科学青年科学基金(6.1403397)
陕西省自然科学基础研究计划(2015JM6313)。
关键词
数字图像处理
金字塔结构
残差密集
多尺度
生成对抗网络
digital image processing
pyramid structure
residual dense
multi-scale
generative adversarial networks