期刊文献+

基于主成分分析的散斑设计方法 被引量:6

Speckle Design Method Based on Principal Component Analysis
原文传递
导出
摘要 基于压缩感知的计算关联成像中,散斑设计是高质量图像重构的关键。针对传统散斑生成方法存在冗余高、关联成像质量低的问题,提出了一种基于主成分分析的散斑设计方法。该方法通过线性映射将高维空间中的数据投影到低维空间中,使低维空间上的投影方差最大化。结合图像先验知识,通过样本训练方法得到一组测量矩阵,在低采样率下可提高成像质量。实验结果表明,与传统方法相比,在采样率相同且低于0.5时,本方法可将图像的峰值信噪比提升5 dB,结构相似度提升0.2,为低采样率下获取高质量图像的同类场景提供了新思路。 Speckle design is the key to high quality image reconstruction in compressive sensing based computational correlation imaging.Aiming at the problems of high redundancy and low quality of correlation imaging in traditional speckle pattern generation methods,we propose a speckle design method based on principal component analysis(PCA).In this method,the data in the high-dimensional space are projected into the low-dimensional space.Combined with image prior knowledge,a set of measurement matrixes are obtained by sample training method,which can improve the image quality at low sampling rate.The experimental results show that,compared with traditional methods,when the sampling rate is the same and lower than 0.5,this method can increase the peak signal-to-noise ratio of the image by 5 dB,and the structural similarity can be increased by 0.2.It provides a new idea for similar scenes that obtain high-quality images at low sampling ratio.
作者 周栋 曹杰 姜雅慧 冯永超 郝群 Zhou Dong;Cao Jie;Jiang Yahui;Feng Yongchao;Hao Qun(Key Laboratory of Robotics and Systems,Ministry of Education,School of Optoelectronics,Beijing Institute of Technology,Beijing 100081,China;China Electronics Technology Instruments Co.,Ltd,Qingdao,Shandong 266555,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第20期240-245,共6页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61871031,61875012)。
关键词 计算关联成像 散斑 主成分分析法 低采样率 computational correlation imaging speckle principal component analysis method low sampling ratio
  • 相关文献

参考文献3

二级参考文献10

共引文献37

同被引文献52

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部