期刊文献+

基于欧氏聚类的改进激光雷达障碍物检测方法 被引量:15

Improved Lidar Obstacle Detection Method Based on Euclidean Clustering
原文传递
导出
摘要 在激光雷达检测障碍物过程中,由于点云近密远疏的特性,车辆的变速移动使得对物体进行分割时出现点云漂移和距离较近的物体难以被分割等现象,容易产生漏检或误检。为了解决此问题,提出一种基于点云射线角度约束的改进欧氏聚类算法,使障碍物检测更加快速准确,所提算法有效解决了点云密度不均匀导致的检测障碍物成功率较低的问题,同时对所提算法进行实车实验。实验结果表明,与传统欧氏聚类算法相比,所提算法能快速准确地对一定范围内的障碍物进行分割和聚类。 During lidar detection of obstacles,owing to the characteristics of near dense and far sparse point clouds,the movement with variable speeds of vehicles results in point cloud drifting in the object segmentation.Moreover,objects close to each other are difficult to be segmented,resulting in omissions or incorrect detections.To address these problems,this study proposes an improved Euclidean clustering algorithm based on the point cloud shot-line angle constraint to make obstacle detection more rapid and accurate.The proposed algorithm effectively solves the problem of low success rate in detecting obstacles owing to the uneven point cloud density.Simultaneously,experiments are performed on the proposed algorithm.The experimental results show that the proposed algorithm can quickly and accurately segment and cluster obstacles within a certain range compared with the traditional Euclidean clustering algorithm.
作者 刘畅 赵津 刘子豪 王玺乔 赖坤城 Liu Chang;Zhao Jin;Liu Zihao;Wang Xiqiao;Lai Kuncheng(School of Mechanical Engineering,GuiZhou University,GuiYang,GuiZhou 550025,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第20期246-252,共7页 Laser & Optoelectronics Progress
基金 国家自然科学基金(51965008) 贵州省优秀青年科技人才项目([2017]5630) 贵州省科技厅支撑([2018]2168) 黔科合重大专项([2019]3012)。
关键词 成像系统 智能驾驶 角度约束 距离分割 欧氏聚类 激光雷达 imaging systems intelligent driving angle constraint distance division Euclidean clustering lidar
  • 相关文献

参考文献7

二级参考文献69

  • 1姜如波.基于三维激光扫描技术的建筑物模型重建[J].测绘通报,2013(S1):80-83. 被引量:24
  • 2袁方,孟增辉,于戈.对k-means聚类算法的改进[J].计算机工程与应用,2004,40(36):177-178. 被引量:48
  • 3刘高军,朱嬿.基于数据挖掘技术的建筑企业信用评价[J].中国矿业大学学报,2005,34(4):494-499. 被引量:21
  • 4ESTER M,KRIEGEL H,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]// Proc of the 1996 2nd Int'l Conf on Knowledge Discovery and Data Mining.Portland:AAAI Press,1996:226-231.
  • 5ESTER M,KRIEGEL H P,SANDER J,et al.Incremental clustering for mining in a data warehousing environment[C]// Proceedings of the Twenty-Fourth Very Large Data Bases(VLDB) Conference.New York:[s.n.],1998:323-333.
  • 6JIN R,YANG G,AGRAWAL G,et al.Shared memory parallelization of data mining algorithms:Techniques,programming interface,and performance[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(1):71-89.
  • 7SHI Yong,SONG Yu-qing,ZHANG Ai-dong.A shrinking-based clustering approach for multidimensional data[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(10):1389-1403.
  • 8曾齐红,毛建华,李先华,刘学锋.激光雷达点云平面拟合过滤算法[J].武汉大学学报(信息科学版),2008,33(1):25-28. 被引量:19
  • 9Reina G,Underwood J,Brooker G,et al.Radar‐based perception for autonomous outdoor vehicles[J].Journal of Field Robotics,2011,28(6):894-913.
  • 10Alvarez J M A,Lopez A M.Road detection based on illuminant invariance[J].Intelligent Transportation Systems,IEEE Transactions on,2011,12(1):184-193.

共引文献206

同被引文献111

引证文献15

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部