摘要
在激光雷达检测障碍物过程中,由于点云近密远疏的特性,车辆的变速移动使得对物体进行分割时出现点云漂移和距离较近的物体难以被分割等现象,容易产生漏检或误检。为了解决此问题,提出一种基于点云射线角度约束的改进欧氏聚类算法,使障碍物检测更加快速准确,所提算法有效解决了点云密度不均匀导致的检测障碍物成功率较低的问题,同时对所提算法进行实车实验。实验结果表明,与传统欧氏聚类算法相比,所提算法能快速准确地对一定范围内的障碍物进行分割和聚类。
During lidar detection of obstacles,owing to the characteristics of near dense and far sparse point clouds,the movement with variable speeds of vehicles results in point cloud drifting in the object segmentation.Moreover,objects close to each other are difficult to be segmented,resulting in omissions or incorrect detections.To address these problems,this study proposes an improved Euclidean clustering algorithm based on the point cloud shot-line angle constraint to make obstacle detection more rapid and accurate.The proposed algorithm effectively solves the problem of low success rate in detecting obstacles owing to the uneven point cloud density.Simultaneously,experiments are performed on the proposed algorithm.The experimental results show that the proposed algorithm can quickly and accurately segment and cluster obstacles within a certain range compared with the traditional Euclidean clustering algorithm.
作者
刘畅
赵津
刘子豪
王玺乔
赖坤城
Liu Chang;Zhao Jin;Liu Zihao;Wang Xiqiao;Lai Kuncheng(School of Mechanical Engineering,GuiZhou University,GuiYang,GuiZhou 550025,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2020年第20期246-252,共7页
Laser & Optoelectronics Progress
基金
国家自然科学基金(51965008)
贵州省优秀青年科技人才项目([2017]5630)
贵州省科技厅支撑([2018]2168)
黔科合重大专项([2019]3012)。
关键词
成像系统
智能驾驶
角度约束
距离分割
欧氏聚类
激光雷达
imaging systems
intelligent driving
angle constraint
distance division
Euclidean clustering
lidar