期刊文献+

一种利用空谱联合特征的高光谱图像分类方法 被引量:6

A Hyperspectral Image Classification Method Based on Spectral-Spatial Features
原文传递
导出
摘要 高光谱图像分类已被公认为是高光谱数据处理的基础性和挑战性任务,丰富的光谱信息和空间信息为有效描述和识别地表物质提供了契机。卷积神经网络(CNN)中的参数较多,为了避免过拟合问题,需要大量的训练样本。Log-Gabor滤波器可以有效地提取包括边缘和纹理在内的空间信息,降低CNN特征提取的难度。为了充分利用CNN和Log-Gabor滤波器的优点,提出了一种将Log-Gabor滤波器和CNN相结合的高光谱图像分类方法,并利用两个真实的高光谱图像数据集进行了对比实验。实验结果表明,所提方法比传统的支持向量机和CNN方法具有更高的分类精度。 Hyperspectral image classification has been recognized as a basic and challenging task in hyperspectral data processing,wherein the rich spectral and spatial information provides an opportunity for the effective description and identification of the surface materials of the earth.There are many parameters in convolutional neural network(CNN).In order to avoid overfitting problem,a large number of training samples are needed in CNN.In addition,the Log-Gabor filtering can effectively extract spatial information,such as the edge and texture,which reduces the difficulty of CNN feature extraction.To leverage the advantages of CNN and Log-Gabor filtering,a hyperspectral image classification method that combines the Log-Gabor filtering and CNN is proposed herein,and two real hyperspectral image datasets are used for comparison experiments.Experimental results show that the proposed method has a higher classification accuracy than that of the traditional support vector machine and CNN.
作者 付青 郭晨 罗文浪 Fu Qing;Guo Chen;Luo Wenlang(School of Electronics and Information Engineering,Jinggangshan University,Ji'an,Jiangxi 343009,China;Jiangxi Engineering Laboratory of IoT Technologies for Crop Growth,Ji'an,Jiangxi 343009,China;College of Surveying and Geo-Informatics,Tongji University,Shanghai 200092,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第20期372-378,共7页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61862035,51867011) 江西省教育厅科技计划(GJJ170651) 井冈山大学自然科学科研项目(JZ1703)。
关键词 遥感 空谱联合特征 高光谱图像 卷积神经网络 LOG-GABOR滤波器 分类 remote sensing spectral-spatial feature hyperspectral image convolutional neural network Log-Gabor filtering classification
  • 相关文献

参考文献7

二级参考文献122

  • 1刘凯龙,孙向军,赵志勇,梁剑卫,王世鑫.地面目标伪装特征的高光谱成像检测方法[J].解放军理工大学学报(自然科学版),2005,6(2):166-169. 被引量:19
  • 2Aharon M, Elad M and Bruckstein A. 2006. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11): 4311-4322 [DOI: 10.1109/TSP.2006.881199].
  • 3Bioueas-Dias J M, Plaza A, Dobigeon N, Parente M, Du Q, Gader P and Chanussot J. 2012. Hyperspectral unmixing overview: geo- metrical, statistical, and sparse regression-based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Re- mote Sensing, 5(2): 354-379 [DOI: 10.1109/JSTARS.2012. 2194696].
  • 4Bioucas-Dias J M, Plaza A, Camps-Vails G, Scheunders P, Nasrabadi N M and Chanussot J. 2013. Hyperspectral remote sensing data analysis and future challenges. IEEE Geoscience and Remote Sensing Magazine, 1(2): 6-36 [DOI: 10.1109/MGRS.2013. 2244672].
  • 5Bozchalooi 1 S and Liang M. 2007. A smoothness index-guided ap- proach to wavelet parameter selection in signal de-noising and fault detection. Journal of Sound and Vibration, 308(1/2): 246-267 [DOI: 10.1016/j.jsv.2007.07.038].
  • 6Bruckstein A M, Donoho D L and Elad M. 2009. From sparse solu- tions of systems of equations to sparse modeling of signals and images. SIAM Review, 51(1): 34-81 [DOI: 10.1137/060657704].
  • 7Candes E J and Tao T. 2005. Decoding by linear programming. IEEE Transactions on Information Theory, 51 (12): 4203-4215 [DO1: 10.1109/TIT.2005.858979].
  • 8Candes E J and Tao T. 2006. Near-optimal signal recovery from ran- dom projections: Universal encoding strategies?. IEEE Transac- tions on Information Theory, 52(12): 5406-5425 [DOI: 10.1109/ TIT.2006.885507].
  • 9Chang C-I. 2007. Hyperspectral Data Exploitation: Theory and Applic- ations. New York: John Wiley & Sons.
  • 10Chen Y, Nasrabadi N M and Tran T D. 201 1a. Simultaneous joint sparsity model for target detection in hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters, 8(4): 676-680 [DOI: 10.1109/LGRS.2010.2099640].

共引文献126

同被引文献49

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部