摘要
令F是特征为0的代数闭域,V1,…,Vm是n维F-向量空间。R1是张量积空间■中所有秩一张量全体。本文主要给出以下结果:线性映射T:■满足T(R1)?R1的充分必要条件是存在可逆线性变换Ai∈Vi,i∈[1,m],使得T(X)=(Aπ(1),Aπ(2),…,Aπ(m))·Xπ,?π∈Sm对于任意■成立,其中■,Sm是m元对称置换群。
Let F be an algebraically closed field of characteristic 0 and V1,…,Vm be F-vector spaces with dimension n.Let R1 denote the set of all rank one tensors in the tensor product space■.In this paper,it is shown that a linear map T:■satisfies T(R1)?R1if and only if there exist nonsingular linear transformations Ai on Vi,i∈[1,m]such that T(X)=(Aπ(1),Aπ(2),…,Aπ(m))·Xπ,?π∈Smfor all■,where■and Sm is a symmetric group of permutations on m elements.
作者
姚红梅
卜长江
YAO Hongmei;BU Changjiang(College of Mathematical Sciences,Harbin Engineering University,Harbin 105001,China)
出处
《黑龙江大学自然科学学报》
CAS
2020年第5期505-512,共8页
Journal of Natural Science of Heilongjiang University
基金
Supported by the National Natural Science Foundation of China(11801115)
the Youth Fund of Heilongjiang Province(QC2018002)。
关键词
张量积空间
秩一张量
线性映射
tensor product space
rank one tensor
linear maps