期刊文献+

扩散方程源项识别反问题的正则化方法

Regularization method for inverse problem of source term identification of diffusion equations
下载PDF
导出
摘要 探讨扩散方程有界区域只含空间变量的源项识别反问题,基于Tikhonov正则化法提出了迭代正则化法,给出了精确解和正则化解的误差估计,通过选取适当的迭代数,迭代正则化法的源项恢复效果优于Tikhonov正则化法。 The inverse problem of source term identification for a bounded region has been discussed,where the source term depends only on spatial variables.Based on the Tikhonov regularization method,an iterative regularization method is proposed,and the error estimates between the exact solution and the regularization solution are given.By selecting the appropriate iteration number,the source recovery effect of the iterative regularization method is superior to that of the Tikhonov regularization method.
作者 郑江澎 冯立新 ZHENG Jiangpeng;FENG Lixin(China-Russian Joint Graluate Sehool,Heilongiang University,Harbin 150080,China;Department of Meehanics and Mathematics,Novosibirsk State University,Novosibirsk 630090,Russia;School of Mathematical Science,Heilongjiang University,Harbin 150080,Chima)
出处 《黑龙江大学自然科学学报》 CAS 2020年第5期535-543,共9页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11871198)。
关键词 扩散方程 源项识别反问题 迭代正则化 误差估计 diffusion equation inverse problem of source term identification iterative regularization error estimation
  • 相关文献

参考文献1

二级参考文献7

  • 1Vainikko G, On the Optimality of Methods for Ill-Posed Problems, Z. Anal. Anw., 6:4(1987), 351-362.
  • 2Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems, New York:Springer-Verlag, 1996.
  • 3Engl H,W., Hanke M. and Neubauer A., Regularization of Inverse Problems, Dordrecht:Kluwer Acdemic Publishers, 1996.
  • 4Schroter T. and Tautenhahn U., On the Optimality of Regularization Methods for Solving Linear Ill-Posed Problems, Z. Anal. Anw., 13:4 (1994), 697-710.
  • 5Tautenhahn U, Optimality for Ill-Posed Problems Under General Source Conditions, Numet. Funct. Anal. and Optimiz, 19 (1998), 377-398.
  • 6Kato T. Perturbation Theory for Linear Operaors, New York: Springer-Verlag, 1966.
  • 7朱佑彬,傅初黎,邱春雨.一类不适定问题具备停止规则的简化迭代技巧[J].兰州大学学报(自然科学版),2002,38(2):1-6. 被引量:3

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部