期刊文献+

Controllability and Observability of Linear Quaternion-valued Systems 被引量:1

原文传递
导出
摘要 The aim of this paper is to define an extension of the controllability and observability for linear quaternion-valued systems(QVS).Some criteria for controllability and observability are derived,and the minimum norm control and duality theorem are also investigated.Compared with real-valuedor complex-valued linear systems,it is shown that the classical Caylay-Hamilton Theorem as well as Popov-Belevitch-Hautus(PBH)type controllability and observability test do not hold for linear QVs.Hence,a modified PBH type necessary condition is studied for the controllability and observability,respectively.Finally,some examples are given to illustrate the effectiveness of the obtained results.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2020年第11期1299-1314,共16页 数学学报(英文版)
基金 the Natural Science Foundation of Zhejiang Province of China(Grant Nos.LR20F030001 and LD19A010001) the National Natural Science Foundation of China(Grant No.11671361) the University of Macao(Grant No.MYRG2019-00039-FST) the Science and Technology Development Fund,Macao SAR(Grant No.FDCT/085/2018/A2)。
  • 相关文献

参考文献2

二级参考文献41

  • 1Beals, R., Gaveau, B., Greiner, P. C.: The Green functions of model step two hypoelliptic operators and the analysis of certain tangential Cauchy-Riemann complexes. Adv. Math., 121, 288-345 (1996).
  • 2Brocker, T., Dieck, T.: Representations of compact Lie groups, Springer-Verlag, New York-Berlin- Heidelberg-Tokyo, 1985.
  • 3Chang, D.-C., Markina, I.: Geometry analysis on quaternion H-type groups. J. Geom. Anal., 16, 265-294 (2006).
  • 4Cowling, M., Dooley, A., Kornyi, A., et al.: An approach to symmetric spaces of rank one via groups of Heisenberg type. J. Geom. Anal., 8, 199-237 (1998).
  • 5Daubechies, I.: Ten Lectures on Wavelets, CBMS-NSF, Regional Conf. Ser. in Math. 61, SIAM, Philidephia, PA, 1992.
  • 6Feichtinger, H. G., Grochenig, K. H.: Banach spaces related to integrable group representations and their atomic decomposition I. J. Funct. Anal., 86, 307-340 (1989).
  • 7Felix, R.: Radon-transformation auf nilpotenten Lie-gruppen. Invent. Math., 112, 413-443 (1993).
  • 8Folland, G.B.: Harmonic Analysis in Phase Space, Princeton University Press, Princeton, 1989.
  • 9Geller, D.: Fourier analysis on the Heisenberg group. J. Funct. Anal., 86, 205-254 (1980).
  • 10Geller, D., Mayeli, A.: Continuous wavelet and frames on stratified Lie groups I. J. Fourier Anal. Appl., 12, 543-579 (2006).

共引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部