期刊文献+

基于时间序列的月度用电量预测算法研究 被引量:2

Research on Monthly Electricity Consumption Forecasting Algorithm Based on Time Series
下载PDF
导出
摘要 文章在调研用电量预测需求以及意义基础上,充分研究国内外典型用电量预测模型算法,通过多种算法比较选型,提出基于大数据挖掘技术的用电量预测算法模型,将用电量分为趋势、季节、残差等三个部分,运用ARIMA模型实现用电量精准预测,对电网资金规划、财务预算管理决策和需求侧响应分析具有重要的指导意义。 Based on the investigation of the demand and signifi cance of electricity consumption forecast,this paper fully studies the algorithms of typical electricity consumption prediction models at home and abroad,and puts forward the electricity consumption prediction algorithm model based on big data mining technology through the comparison and selection of various algorithms.The power consumption is divided into three parts:trend,quarterly savings and residual error.ARIMA model is used to realize accurate prediction of power consumption,and the power grid funds are estimated accurately Planning,fi nancial budget management decision and demand side response analysis have important guiding signifi cance.
作者 王胜 胡武军 金慎 吴飞 熊艳 Wang Sheng;Hu Wu-jun;Jin Shen;Wu Fei;Xiong Yan
出处 《电力系统装备》 2020年第20期177-179,共3页 Electric Power System Equipment
关键词 用电量预测 数据挖掘 电力大数据 power consumption prediction data mining power big data
  • 相关文献

参考文献3

二级参考文献57

  • 1曹国剑,黄纯,隆辉,贺文斗.基于GM(1,1)改进模型的电网负荷预测方法[J].电网技术,2004,28(13):50-53. 被引量:40
  • 2杨正瓴,田勇,张广涛,林孔元.相似日短期负荷预测的非线性理论基础与改进[J].电网技术,2006,30(6):63-66. 被引量:29
  • 3朱陶业,李应求,张颖,张学庄,何朝阳.提高时间序列气象适应性的短期电力负荷预测算法[J].中国电机工程学报,2006,26(23):14-19. 被引量:46
  • 4牛琨,张舒博,陈俊亮.采用属性聚类的高维子空间聚类算法[J].北京邮电大学学报,2007,30(3):1-5. 被引量:13
  • 5Zhou P, Ang B W, Poh K L. A trigonometric grey prediction approach to forecasting electricity demand[J]. Energy, 2006, 31(14): 2839-2847.
  • 6翟军,盛建明,冯英浚.MGM(1,n)灰色模型及应用[J].系统工程理论与实践,1997,17(5):109-113. 被引量:122
  • 7中华人民共和国国家质量监督检验检疫总局.GB/T4754-2011国民经济行业分类[s].北京:中国标准出版社,2011.
  • 8HanY, ShaX, Grover-SilvaE, etal. On the impact of socio-economic factors on power load forecasting [C]//2014 IEEE International Conference on Big Data. Washington, DC, USA: IEEE, 2014: 742-747.
  • 9Kolter J Z, Ferreira Jr J. A large-scale study on predicting and contextualizing building energy usage[C]// Proceedings of the Twenty-Fifth AAAI "Conference on Artificial Intelligence. San Francisco, California, USA: Association for the Advancement of Artificial Intelligence, 2011: 1349-1356.
  • 10Aman S, Simrnhan Y, Prasanna V K. Improving energy use forecast for campus micro-grids using indirect indicators[C]//2011 l lth IEEE International Conference on Data Mining Workshops. Vancouver, BC, Canada: IEEE, 2011: 389-397.

共引文献164

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部