期刊文献+

Hilbert K-模上的广义框架变换和正交投影

Generalized Frame Transform and Orthogonal Projection in Hilbert K-Modules
下载PDF
导出
摘要 本文引入了Hilbert K-模上的广义框架,广义框架变换和正交投影等概念,研究了广义标准正交基,广义(正规)紧框架(广义Bessel序列)的分解,得到了广义框架变换和正交投影之间的关系. In this paper,the concepts of generalized frame,generalized frame transform and orthogonal projection in Hilbert K-modules are introduced and the theories of decomposition of generalized standard orthogonal basis,generalized(normalized tight)frames(generalized Bessel sequence)are obtained.Finally,the relationship between generalized frame transform and orthogonal projection is studied.
作者 董芳芳 DONG Fangfang(College of Mathematical and Statistics,Tianshui Normal University,Tianshui 741001,China)
出处 《应用泛函分析学报》 2020年第3期175-181,共7页 Acta Analysis Functionalis Applicata
关键词 HILBERT K-模 广义框架变换 正交投影 分解 Hilbert K-module generalized frame transform orthogonal projection decomposition
  • 相关文献

参考文献2

二级参考文献23

  • 1姚喜妍.Perturbations of G-Frames in Hilbert Spaces[J].Journal of Mathematical Research and Exposition,2008,28(4):1037-1041. 被引量:3
  • 2Kaplansky I. Modules over Operator Algebras. Amer. J. Math., 1953, 839-853.
  • 3Lance E C. Hilbert C^*-module. Cambridge University Press. 1995, 1-129.
  • 4Daubechies I, Grossmann A and Meyer Y. Painless Nonorthogonal Expansions. Math. Phys., 1986, 27: 1271-1283.
  • 5Duffin R J and Schaeffer A C. A Class of Nonharmonic Fourier Sries. Trans. Amer. Math. Soc., 72(1952) 341-366.
  • 6Han D Q and Larson D R. Frames, Bases and Group Representation. Memoirs Amer. Math. Soc., 2000,147(697).
  • 7Frank M and Larson D R. Frames in Hilbert C^*-modules and C^*-algebras. Operator theory, 2002, 48: 203-233.
  • 8Frank M and Larson D R. A Module Frame Concept for Hilbert C^*-modules. Contemp. Math, 247, Amer.Soc., Providence, RI, 1991, 207-233.
  • 9Watatani Y. Index for C^*-subalgebras. Memoirs. Amer. Math. Soc.m 1990,83.
  • 10Pimsner M and Popa S. Entropy and Index for Subfactors. Ann. Scient, Ec. Norm, Sup. 1986, 57-106.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部