摘要
近年来卷积神经网络(convolutional neural network,CNN)在辅助分析肺癌方面表现出良好的应用前景和研究价值。CNN可以从图像数据中自主学习以提取特定的与临床相关的特征。本文对构建CNN通过输入CT图像进行端到端分析,从而在术前预测肺癌风险和临床治疗效果;以及通过输入肺结节组织切片图像进行术后病理学分析作一综述。
In recent years,convolutional neural network(CNN)has exhibited its promising prospect and research value in assisting the analysis of lung cancer.The CNN can automatically learn from the images to extract specific clinically relevant features.This review summarized the construction of CNN by inputting CT images for end-to-end analysis to predict lung cancer risk and the efficacy of clinical treatment,as well as the application of CNN for analyzing pathological slides of resected pulmonary nodules via inputting histopathologic images.
作者
薛宇航
陈东来
佘云浪
陈昶
陈勇兵
徐卫华
Xue Yuhang;Chen Donglai;She Yunlang;Chen Chang;Chen Yongbing;Xu Weihua(Department of Thoracic Surgery,Second Affiliated Hospital of Soochow University,Medical College of Soochow University,Suzhou 215004,China;Department of Thoracic Surgery,Shanghai Pulmonary Hospital,Shanghai 200433,China)
出处
《中华胸心血管外科杂志》
CSCD
北大核心
2020年第9期569-572,共4页
Chinese Journal of Thoracic and Cardiovascular Surgery
基金
国家自然科学基金(81800406)
苏州市重点学科建设(SZXK201803)
苏州市科技计划项目(SS2019061)
苏州大学附属第二医院科研预研基金项目(SDFEYBS1902)。