期刊文献+

二值加权正交迭代相机位姿估计算法 被引量:4

A Binary Weighted Orthogonal Iterative Camera Pose Estimation Algorithm
下载PDF
导出
摘要 在相机位姿估计算法的实际应用中,由于2D像点与3D参考点的错误匹配,参考点中往往含有异常值。针对现有算法抗异常值能力较弱的问题,提出了一种基于正交迭代的二值加权算法。该算法在正交迭代算法的基础上,引入包含两个阈值的加权系统来衡量参考点的可靠性。选取重投影误差的四分位数中的最大值作为阈值之一,另外引入一个与重投影误差和焦距相关的阈值来加速异常值比例较低时的收敛速度。最终选取两阈值的最大值对目标函数进行二值加权,降低了异常值对估计结果的影响。实验表明,该方法提升了正交迭代算法的抗异常值能力,具有较强的鲁棒性。 In the practical application of camera pose estimation algorithm,affected by the matching error,the reference points often contain outliers.In view of the weak ability of existing algorithms to resist the outliers,a binary weighted algorithm based on orthogonal iteration is proposed.Based on the orthogonal iterative algorithm,a weighted system with two thresholds is introduced to measure the reliability of the reference point.The maximum value of the quartile of the reprojection error is selected as one of the thresholds.In addition,a threshold related to the reprojection error and focal length is introduced to accelerate the convergence speed when the proportion of outliers is low.Finally,the maximum value of two thresholds is selected to weight the objective function,which reduces the influence of outliers on the estimation.The experimental results show that the method improves the anti-outlier ability of the orthogonal iterative algorithm and performs better in robustness.
作者 陈紫强 周秉毅 刘庆华 谢振鑫 CHEN Ziqiang;ZHOU Bingyi;LIU Qinghua;XIE Zhenxin(Key Laboratory of Cognitive Radio and Information Processing of the Ministry of Education.Guilin University of Electronic Technology,Guilin 541004,CHN)
出处 《半导体光电》 CAS 北大核心 2020年第5期743-748,共6页 Semiconductor Optoelectronics
基金 国家自然科学基金项目(61861011,61871425) 广西自然科学基金项目(2016GXNSFAA380036,2018GXNSFAA138091) 广西重大科技项目(AA17204093)。
关键词 相机位姿估计 正交迭代 加权优化 camera pose estimation orthogonal iterative algorithm weighted optimization
  • 相关文献

参考文献7

二级参考文献59

  • 1孙凤梅.关于摄象机校正和PnP问题区别的一点讨论[J].自动化学报,2005,31(3):402-405. 被引量:2
  • 2朱仁璋,林彦,张磊.航天器交会计算机视觉系统测距求解新算法[J].北京航空航天大学学报,2006,32(7):764-768. 被引量:14
  • 3郭阳,徐心和.未标定摄像机P5P问题的一种解析解[J].计算机学报,2007,30(7):1195-1200. 被引量:8
  • 4R Hartley, A Zisserman. Multiple View Geometry in Computer Vision [M]. Cambridge University Press, Second Edition, 2004.
  • 5J Mcglone, E Mikhail, J Bethel. Manual of Photogrammetry [M]. American Society fbr Photogrammetry and Remote Sensing, fifth edition, 2004.
  • 6G N Desouza, A C Kak. Vision for mobil e robot navigation: A survey [J]. IEEE Transations on Pattern Analysis aod Machine Intelligence, 2002, 24(2): 237-267.
  • 7R Azuma, Y Baillot, R Behringer, et al: Recent advances in augmented reality [J]. IEEE Computer Graphics and Applications, 2001,21 (6): 34-47.
  • 8L Kneip, D Scaramuzza, R Siegwart. A novel parametrization of the perspective-three-point problem t]r a direct computation of absolute camera position and orientation [C]. Tbe 24th IEEE Conference on Computer Vision and Pattern Recogoition, 2011. 2969- 2976.
  • 9L Quan, Z Lan. Linear N-point camera pose determination [J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 1999, 21(8): 774-780.
  • 10P D Fiore. Efficient linear solution of exterior m'ientation [J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 2001, 23(2): 140-148.

共引文献81

同被引文献38

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部