摘要
伴随着人工智能、大数据、学习分析等技术在教育中的深度应用,自适应学习成为在线教育新的研究热点。近年来的研究表明,智能技术促进自适应学习的主要方式在于构建并应用自适应学习推荐模式。学习推荐技术是自适应学习的关键,它依赖于大数据与学习分析,但在学习分析过程中会给学习者带来隐私泄露等风险。基于此,区别于目前常用的自适应学习推荐技术,提出了具有数据隐私保护功能的自适应学习牵引模型,其在应用过程中分为学习数据分析、学习需求展示与筛选、隐私保护防御、智能代理、学习牵引和牵引结果展示等六个阶段。这也喻示着在“智能+”教育时代促进自适应学习的研究取向,主要在于认知突破、技术突破、情感分析突破、“两张皮”突破和隐私保护突破,从而丰富自适应学习的内涵与外延,有助于推进自适应学习理论与技术的发展。
With the deep application of artificial intelligence,big data and learning analysis in education,adaptive learning has been one new research hotspot of online education.Recent years’researches show that the main way that smart technology promotes adaptive learning is the construction and application of recommendation pattern of adaptive learning.Learning recommendation is the key technique of adaptive learning,which depends on big data and learning analysis.However,learning analysis brings the risk of privacy leakage to learners.Based on it and different from current adaptive learning recommendation,adaptive learning pulling model with privacy protection is put forward.The model comprises learning data analysis,learning requirement listing and choosing,privacy protection and defense,smart agent,learning pulling and pulling data showing.The reform also predicts that in the era of intelligence+education,the new trend of adaptive learning research is composed of cognitive breakthrough,technology breakthrough,emotion breakthrough,discipline gap breakthrough and privacy risk breakthrough.The research enriches the connotation and extension of adaptive learning,and makes a progress for the theory and technology of adaptive learning.
作者
李凤英
龙紫阳
Li Fengying;Long Ziyang(School of Continuing Education,Shanghai Jiaotong University;Graduate School of Education,Shanghai Jiaotong University,Shanghai 200240)
出处
《远程教育杂志》
CSSCI
北大核心
2020年第6期22-31,共10页
Journal of Distance Education
基金
国家社科基金项目“基于贝叶斯方法的社会网络大数据使用与隐私保护平衡机制研究”(编号:16BGLOO3)
国家自然科学基金“基于位置的认证协议研究”(编号:61170227)
教育部人文社科项目“基于数字认证的MOOC诚信机制研究”(编号:14YJA880033)的阶段性研究成果。
关键词
自适应学习
自适应学习系统
学习推荐
学习牵引
学习分析
教育4.0
“智能+”教育
Adaptive Learning
Adaptive Learning System
Learning Recommendation
Learning Pulling
Study Analysis
Education 4.0
“Intelligence+”Education