期刊文献+

基于改进飞蛾扑火算法的微带天线设计优化 被引量:1

Microstrip Antenna Design Optimization Based on Improved Moth-flame Optimizer
下载PDF
导出
摘要 为解决工程中的非线性优化问题,提出一种改进的飞蛾扑火算法。首先,采用均匀化设计思想,将佳点集理论应用于种群初始化,并将越界重置策略引入算法,针对超出解空间的个体做出干预;然后,将引力搜索算法改进并融合于飞蛾扑火算法迭代机制中,提出一种新的动态引力系数,增加算法的寻优性能;最后,为了避免算法陷入局部最优,对个体进行柯西变异,提升算法的全局搜索能力。将改进算法应用于窄缝开槽微带天线的优化设计,端口隔离度降低了14.5 dB,回波损耗降低约6 dB。 In order to solve the nonlinear optimization problem in engineering,this paper proposes an improved moth-flame algorithm.Firstly,the algorithm adopts design philosophy of homogenization,and applies the good-point set to population initialization,the overstepping-reset strategy is introduced into the algorithm to intervene the individuals beyond the solution space.Then,the improved gravitational search algorithm is integrated into the iteration of moth-flame algorithm,and a new dynamic gravitational coefficient is proposed to increase the optimization performance of the algorithm.Finally,in order to avoid the algorithm falling into the local optimum,the Cauchy mutation is carried out on the individual to improve the global search ability of the algorithm.The improved algorithm is applied to the optimal design of narrow-slot microstrip antenna,experimental results show that port isolation was reduced by 14.5 dB and the return loss was reduced by about 6 dB.
作者 秦天 项铁铭 李蓓蓓 QIN Tian;XIANG Tieming;LI Beibei(School of Electronic Information,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处 《杭州电子科技大学学报(自然科学版)》 2020年第6期13-18,31,共7页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 飞蛾扑火优化算法 引力搜索算法 微带天线 moth-flame optimizer gavitational search algorithm microstrip antenna
  • 相关文献

参考文献4

二级参考文献27

  • 1Bratton D, Kennedy J. Defining a standard for particle swarm optimization//Proceedings of the IEEE Swarm lntelli genceSymposium. Honolulu, HI, 2007:120-127.
  • 2Eberhart R, Shi Y. Particle swarm optimization: developments, applications, and resources//Proceedings of the IEEE International Conference on Evolutionary Computation. Piscaraway, NJ, 2001, 1:81-86.
  • 3Said M, Ahamed A. Hybrid periodic boundary condition fro particle swarm optimization. IEEE Transactions on Antennas and Propagation, 2007, 55(11): 3251-3256.
  • 4Robinson J, Yahya R. Particle swarm optimization in electromagnetic. IEEE Transactions on Antennas Propagalion, 2004, 52(2):397- 407.
  • 5Huang T, Mohan A S, A hybrid boundary condition for robust particle swarm optimization. IEEE Antennas and Wireless Propagation Letters, 2005, 4(1): 112 -117.
  • 6Xu N H, Yahya R. Boundary conditions in particle swarm optimization revisited. IEEE Transactions on Antennas and Propagation, 2007, 55(3): 760- 765.
  • 7Li J, Ren B, Wang C. A random velocity houndary condition for robust particle swarm optimization//Proceedings of the Life System Modeling and Simulation 2007 International Conference on Bio-Inspired Computational Intelligence and Applications. Shanghai, China, 2007:92-99.
  • 8Zhang W J, Xie X F, Bi D C. Handling boundary constraints for numerical optimization by particle swarm flying in periodic search space//Proceedings of the IEEE CEC. Oregon, USA, 2004: 2307 -2311.
  • 9Kennedy J. How it works: Collaborative trial and error. International Journal of Computational Intelligence Research, 2008, 4(2): 71-78.
  • 10Kennedy J. Why does it need velocity?//Proceedings of the IEEE Swarm Intelligence Symposium. Pasadena, California, 2005 : 38 -44.

共引文献66

同被引文献25

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部