期刊文献+

Mg-Nd/Ni储氢合金微观组织及吸放氢动力学 被引量:1

Microstructure and de-/absorption kinetics of Mg-Nd/Ni alloys
下载PDF
导出
摘要 采用熔剂保护法制备了不同Nd含量的Mg-Nd二元及Mg-Nd-Ni三元储氢合金,通过高能球磨对铸态合金进行组织细化,制备镁基纳米复合储氢颗粒,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、自动Sievert设备(PCT)及差示扫描量热仪(DSC)等系统研究了Ni、Nd添加及活化过程中氢压对合金微观组织及吸放氢动力学的影响。结果表明:Ni、Nd含量会影响球磨后合金的颗粒尺寸,Mg12Nd与H反应生成的NdH3会稳定存在,NdH3明显促进Mg的吸氢,而Mg2Ni明显改善MgH2的放氢。活化过程中超高的氢压可明显细化第二相颗粒,在3 MPa氢压下活化后,合金中NdH3相的颗粒尺寸在50~200 nm之间,而在8 MPa氢压下活化后,NdH3的颗粒尺寸在10 nm左右。相较于在3 MPa氢压下活化的合金颗粒,在8 MPa氢压下活化后样品的吸放氢速率得到明显改善。 Mg-Nd binary and Mg-Nd-Ni ternary alloys with different Nd contents were prepared in graphite crucible under the protection of covering agent.High energy ball-milling was performed to obtain Mg-based nanocomposite hydrogen storage materials.The phase components,microstructure and hydrogen storage properties were systematically investigated by XRD,SEM,TEM,PCT and DSC.The results show that the contents of Ni and Nd influence the particle size of ball milled samples.Mg2Ni significantly favors desorption process,while NdH3 is more conducive to absorption.Ultrahigh hydrogen pressure during activation process can refine the microstructure of Mg alloys.The particle size of NdH3 is in the range of 50−200 nm for Mg-15Nd alloy activated under 3 MPa hydrogen pressure,while it is about 10 nm for Mg-15Nd alloy activated under 8 MPa hydrogen pressure.The sample activated under 8 MPa hydrogen pressure shows superior absorption and desorption kinetics than that activated under 3 MPa hydrogen pressure.
作者 解立帅 徐慢 章晓波 XIE Li-shuai;XU Man;ZHANG Xiao-bo(School of Material Science and Engineering,Nanjing Institute of Technology,Nanjing 211167,China;Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology,Nanjing Institute of Technology,Nanjing 211167,China)
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2020年第10期2340-2349,共10页 The Chinese Journal of Nonferrous Metals
基金 江苏省自然科学基金资助项目(BK20191020) 南京工程学院科研基金资助项目(YKJ201804)。
关键词 镁合金 储氢材料 高能球磨 吸放氢速率 Mg alloys hydrogen storage materials high-energy ball milling absorption and desorption kinetics
  • 相关文献

参考文献7

  • 1Hui Yong,Shihai Guo,Zeming Yuan,Yan Qi,Dongliang Zhao,Yanghuan Zhang.Phase transformation,thermodynamics and kinetics property of Mg90Ce5RE5(RE=La,Ce,Nd)hydrogen storage alloys[J].Journal of Materials Science & Technology,2020,47(16):84-93. 被引量:8
  • 2Zhen-yang LI,Sheng-li LI,Ze-ming YUAN,Yang-huan ZHANG,Yan QI.Microstructure, hydrogen storage thermodynamics and kinetics of La_5Mg_(95-x)Ni_x(x=5, 10, 15) alloys[J].Transactions of Nonferrous Metals Society of China,2019,29(5):1057-1066. 被引量:4
  • 3黄显吞,覃昌生,卿培林,谢政专,李柳杰.添加Si对Mg-Li合金储氢性能的影响[J].中国有色金属学报,2017,27(10):2072-2078. 被引量:3
  • 4M.Ablikim,M.N.Achasov,P.Adlarson,S.Ahmed,M.Albrecht,M.Alekseev,A.Amoroso,F.F.An,Q.An,Y.Bai,O.Bakina,R.Baldini Ferroli,Y.Ban,K.Begzsuren,J.V.Bennett,N.Berger,M.Bertani,D.Bettoni,F.Bianchi,J Biernat,J.Bloms,I.Boyko,R.A.Briere,L.Calibbi,H.Cai,X.Cai,A.Calcaterra,G.F.Cao,N.Cao,S.A.Cetin,J.Chai,J.F.Chang,W.L.Chang,J.Charles,G.Chelkov,Chen,G.Chen,H.S.Chen,J.C.Chen,M.L.Chen,S.J.Chen,Y.B.Chen,H.Y.Cheng,W.Cheng,G.Cibinetto,F.Cossio,X.F.Cui,H.L.Dai,J.P.Dai,X.C.Dai,A.Dbeyssi,D.Dedovich,Z.Y.Deng,A.Denig,Denysenko,M.Destefanis,S.Descotes-Genon,F.De Mori,Y.Ding,C.Dong,J.Dong,L.Y.Dong,M.Y.Dong,Z.L.Dou,S.X.Du,S.I.Eidelman,J.Z.Fan,J.Fang,S.S.Fang,Y.Fang,R.Farinelli,L.Fava,F.Feldbauer,G.Felici,C.Q.Feng,M.Fritsch,C.D.Fu,Y.Fu,Q.Gao,X.L.Gao,Y.Gao,Y.Gao,Y.G.Gao,Z.Gao,B.Garillon,I.Garzia,E.M.Gersabeck,A.Gilman,K.Goetzen,L.Gong,W.X.Gong,W.Gradl,M.Greco,L.M.Gu,M.H.Gu,Y.T.Gu,A.Q.Guo,F.K.Guo,L.B.Guo,R.P.Guo,Y.P.Guo,A.Guskov,S.Han,X.Q.Hao,F.A.Harris,K.L.He,F.H.Heinsius,T.Held,Y.K.Heng,Y.R.Hou,Z.L.Hou,H.M.Hu,J.F.Hu,T.Hu,Y.Hu,G.S.Huang,J.S.Huang,X.T.Huang,X.Z.Huang,Z.L.Huang,N.Huesken,T.Hussain,W.Ikegami Andersson,W.Imoehl,M.Irshad,Q.Ji,Q.P.Ji,X.B.Ji,X.L.Ji,H.L.Jiang,X.S.Jiang,X.Y.Jiang,J.B.Jiao,Z.Jiao,D.P.Jin,S.Jin,Y.Jin,T.Johansson,N.Kalantar-Nayestanaki,X.S.Kang,R.Kappert,M.Kavatsyuk,B.C.Ke,I.K.Keshk,T.Khan,A.Khoukaz,P.Kiese,R.Kiuchi,R.Kliemt,L.Koch,O.B.Kolcu,B.Kopf,M.Kuemmel,M.Kuessner,A.Kupsc,M.Kurth,M.G.Kurth,W.Kuhn,J.S.Lange,P.Larin,L.Lavezzi,H.Leithoff,T.Lenz,C.Li,Cheng Li,D.M.Li,F.Li,F.Y.Li,G.Li,H.B.Li,H.J.Li,J.C.Li,J.W.Li,Ke Li,L.K.Li,Lei Li,P.L.Li,P.R.Li,Q.Y.Li,W.D.Li,W.G.Li,X.H.Li,X.L.Li,X.N.Li,X.Q.Li,Z.B.Li,H.Liang,H.Liang,Y.F.Liang,Y.T.Liang,G.R.Liao,L.Z.Liao,J.Libby,C.X.Lin,D.X.Lin,Y.J.Lin,B.Liu,B.J.Liu,C.X.Liu,D.Liu,D.Y.Liu,F.H.Liu,Fang Liu,Feng Liu,H.B.Liu,H.M.Liu,Huanhuan Liu,Huihui Liu,J.B.Liu,J.Y.Liu,K.Y.Liu,Ke Liu,Q.Liu,S.B.Liu,T.Liu,X.Liu,X.Y.Liu,Y.B.Liu,Z.A.Liu,Zhiqing Liu,Y.F.Long,X.C.Lou,H.J.Lu,J.D.Lu,J.G.Lu,Y.Lu,Y.P.Lu,C.L.Luo,M.X.Luo,P.W.Luo,T.Luo,X.L.Luo,S.Lusso,X.R.Lyu,F.C.Ma,H.L.Ma,L.L.Ma,M.M.Ma,Q.M.Ma,X.N.Ma,X.X.Ma,X.Y.Ma,Y.M.Ma,F.E.Maas,M.Maggiora,S.Maldaner,S.Malde,Q.A.Malik,A.Mangoni,Y.J.Mao,Z.P.Mao,S.Marcello,Z.X.Meng,J.G.Messchendorp,G.Mezzadri,J.Min,T.J.Min,R.E.Mitchell,X.H.Mo,Y.J.Mo,C.Morales Morales,N.Yu.Muchnoi,H.Muramatsu,A.Mustafa,S.Nakhoul,Y.Nefedov,F.Nerling,I.B.Nikolaev,Z.Ning,S.Nisar,S.L.Niu,S.L.Olsen,Q.Ouyang,S.Pacetti,Y.Pan,M.Papenbrock,P.Patteri,M.Pelizaeus,H.P.Peng,K.Peters,A.A.Petrov,J.Pettersson,J.L.Ping,R.G.Ping,A.Pitka,R.Poling,V.Prasad,M.Qi,T.Y.Qi,S.Qian,C.F.Qiao,N.Qin,X.P.Qin,X.S.Qin,Z.H.Qin,J.F.Qiu,S.Q.Qu,K.H.Rashid,C.F.Redmer,M.Richter,M.Ripka,A.Rivetti,V.Rodin,M.Rolo,G.Rong,J.L.Rosner,Ch.Rosner,M.Rump,A.Sarantsev,M.Savrie,K.Schoenning,W.Shan,X.Y.Shan,M.Shao,C.P.Shen,P.X.Shen,X.Y.Shen,H.Y.Sheng,X.Shi,X.D Shi,J.J.Song,Q.Q.Song,X.Y.Song,S.Sosio,C.Sowa,S.Spataro,F.F.Sui,G.X.Sun,J.F.Sun,L.Sun,S.S.Sun,X.H.Sun,Y.J.Sun,Y.K Sun,Y.Z.Sun,Z.J.Sun,Z.T.Sun,Y.T Tan,C.J.Tang,G.Y.Tang,X.Tang,V.Thoren,B.Tsednee,I.Uman,B.Wang,B.L.Wang,C.W.Wang,D.Y.Wang,H.H.Wang,K.Wang,L.L.Wang,L.S.Wang,M.Wang,M.Z.Wang,Wang Meng,P.L.Wang,R.M.Wang,W.P.Wang,X.Wang,X.F.Wang,X.L.Wang,Y.Wang,Y.F.Wang,Z.Wang,Z.G.Wang,Z.Y.Wang,Zongyuan Wang,T.Weber,D.H.Wei,P.Weidenkaff,H.W.Wen,S.P.Wen,U.Wiedner,G.Wilkinson,M.Wolke,L.H.Wu,L.J.Wu,Z.Wu,L.Xia,Y.Xia,S.Y.Xiao,Y.J.Xiao,Z.J.Xiao,Y.G.Xie,Y.H.Xie,T.Y.Xing,X.A.Xiong,Q.L.Xiu,G.F.Xu,L.Xu,Q.J.Xu,W.Xu,X.P.Xu,F.Yan,L.Yan,W.B.Yan,W.C.Yan,Y.H.Yan,H.J.Yang,H.X.Yang,L.Yang,R.X.Yang,S.L.Yang,Y.H.Yang,Y.X.Yang,Yifan Yang,Z.Q.Yang,M.Ye,M.H.Ye,J.H.Yin,Z.Y.You,B.X.Yu,C.X.Yu,J.S.Yu,C.Z.Yuan,X.Q.Yuan,Y.Yuan,A.Yuncu,A.A.Zafar,Y.Zeng,B.X.Zhang,B.Y.Zhang,C.C.Zhang,D.H.Zhang,H.H.Zhang,H.Y.Zhang,J.Zhang,J.L.Zhang,J.Q.Zhang,J.W.Zhang,J.Y.Zhang,J.Z.Zhang,K.Zhang,L.Zhang,S.F.Zhang,T.J.Zhang,X.Y.Zhang,Y.Zhang,Y.H.Zhang,Y.T.Zhang,Yang Zhang,Yao Zhang,Yi Zhang,Yu Zhang,Z.H.Zhang,Z.P.Zhang,Z.Q.Zhang,Z.Y.Zhang,G.Zhao,J.W.Zhao,J.Y.Zhao,J.Z.Zhao,Lei Zhao,Ling Zhao,M.G.Zhao,Q.Zhao,S.J.Zhao,T.C.Zhao,Y.B.Zhao,Z.G.Zhao,A.Zhemchugov,B.Zheng,J.P.Zheng,Y.Zheng,Y.H.Zheng,B.Zhong,L.Zhou,L.P.Zhou,Q.Zhou,X.Zhou,X.K.Zhou,Xingyu Zhou,Xiaoyu Zhou,Xu Zhou,A.N.Zhu,J.Zhu,J.Zhu,K.Zhu,K.J.Zhu,S.H.Zhu,W.J.Zhu,X.L.Zhu,Y.C.Zhu,Y.S.Zhu,Z.A.Zhu,J.Zhuang,B.S.Zou,J.H.Zou,无.Future Physics Programme of BESⅢ[J].Chinese Physics C,2020,44(4). 被引量:539
  • 5张健,朱璞,毛聪,周惦武.碳材料掺杂对镁基氢化物释氢性能的影响及其微观机理[J].中国有色金属学报,2015,25(9):2464-2470. 被引量:10
  • 6黄显吞,卿培林,覃昌生,谢政专.过渡金属V、Ti及Y的添加对Mg-Al合金储氢性能的影响[J].中国有色金属学报,2020,30(2):333-340. 被引量:5
  • 7张琦,李双寿,董占民,汤彬,李睿,林万明.Mg_(65)Ni_(10)RE_(25)(RE=La,Ce,Pr,Nd,Mm)非晶储氢合金电极的性能[J].中国有色金属学报,2015,25(6):1538-1545. 被引量:7

二级参考文献38

  • 1陈伟荣,王清,程旭,张庆瑜,董闯.基于团簇线的Fe-B-Y基五元块体非晶合金[J].金属学报,2007,43(8):797-802. 被引量:4
  • 2KLEBANOFF L E, KELLER J O. 5 years of hydrogen storage research in the U.S. DOE metal hydride center of excellence (MHCoE)[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4533-4576.
  • 3ZHU M, LU Y S, OUYANG L Z, WANG H. Thermodynamic tuning of Mg-based hydrogen storage alloys: A review[J]. Materials, 2013, 6(10): 4654-4674.
  • 4LI W Y, LI C S, MA FI, CHEN I. Magnesium nanowires: Enhanced kinetics for hydrogen absorption and desorption[J]. Journal of the American Chemical Society, 2007, 129(21): 6710-6711.
  • 5LIANG G, HUOT J, BOILY S, VAN NESTE A, SCHULZ R. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm(Tm=Ti, V, Mn, Fe and Ni)[J]. Journal of Alloys and Compounds, 1999, 292(1/2): 247-252.
  • 6ZHONG H C, WANG H, OUYANG L Z, ZHU M. Microstructure and hydrogen storage properties of Mg-Sn nanocomposite by mechanical milling[J]. Journal of Alloys and Compounds, 201 i, 509(11): 4268-4272.
  • 7PAN Yin-cheng, ZOU Jian-xin, ZENG Xiao-qin, DING Wen-jiang. Hydrogen storage properties of Mg-TiO2 composite power prepared by arc plasma method[J]. Transaction of Nonferrous Metals Society of China, 2014, 24(12): 3834-3839.
  • 8KHANDELWAL A, AGRESTI F, CAPURSO G, RUSSO S L, MADDALENS A, GIALANELLA S, PRINCIPI G. Pellets of MgH2-based composites as practical material for solid state hydrogen storage[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3565-3571.
  • 9MALKA I E, CZUJKO T, BYSTRZYCKI J. Catalytic effect of halide additives ball milled with magnesium hydride[J]. Acta Materialia, 2010, 35(4): 1706-1712.
  • 10FUSTER V, CASTRO F J, TROIANI H, URRETAVIZCAYA G, Characterization of graphite catalytic effect in reactively ball-milled MgH2-C and Mg-C composites[J]. Intemational Joumal of Hydrogen Energy, 2011, 36(15): 9051-9061.

共引文献564

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部