摘要
针对轨迹预测中基于物理的运动模型长期预测(超过1 s)不可靠、深度学习预测模型易产生梯度消失或梯度爆炸的问题,提出了一种将改进极限学习机(ELM)和深度神经网络进行信息融合的预测模型。改进的极限学习机以模拟退火粒子群优化(SAPSO)算法为基础,改进的深度神经网络使用修正线性单元(ReLU)函数替换激活函数,并使用均方根反向传播(RMSProp)算法来优化深度神经网络,试验结果表明,提出的预测算法具有较高的预测精度。
For the problem that the long-term prediction of physics-based motion model(more than 1 s)in trajectory prediction is not reliable,and the deep learning prediction model easily produces gradient disappearance or gradient explosion,a prediction model which fuses information for the improved Extreme Learning Machine(ELM)and deep neural network is proposed.An improved extreme learning machine is based on Simulated Annealing Particle Swarm Optimization(SAPSO)algorithm,the improved depth neural network uses the Rectified Linear Unit(ReLU)function replacement activation function,and uses the Root Mean Square Propagation(RMSProp)algorithm to optimize neural network,the test results show that the proposed prediction algorithm has high prediction accuracy.
作者
谭紫阳
高忠文
邓宇
Tan Ziyang;Gao Zhongwen;Deng Yu(Harbin University of Science and Technology,Harbin 150080;State Key Laboratory of Multiphase Flow in Power Engineering,Xi’an Jiaotong University,Xi’an 710049)
出处
《汽车技术》
CSCD
北大核心
2020年第11期16-20,共5页
Automobile Technology
基金
中央高校基本科研业务费项目(xjj2018174)
西安市科技计划(2017040CG/CG014/成果转化-10)。
关键词
智能车辆
轨迹预测
深度神经网络
极限学习机
Intelligent vehicle
Trajectory prediction
Deep neural network
Extreme learning machine