期刊文献+

基于改进的隐马尔可夫模型的新闻推荐算法 被引量:4

News Recommendation Algorithm Based On Improved Hidden Markov Model
下载PDF
导出
摘要 推荐系统已经应用到各行各业中,新闻推荐也应运而生。用户在阅读新闻时一般是时间序列的形式,然而,传统的新闻推荐算法很少考虑用户浏览行为的时间序列特征。因此,它并不能有效地预测用户阅读的下一篇新闻。针对这一问题,将隐马尔可夫模型融入到新闻推荐算法中,根据用户的阅读轨迹,找到用户下一时刻阅读概率最高的新闻。在此基础上,加入状态驻留时间元素,将隐马尔可夫模型的五元素扩展为六元素,以此来提高推荐准确度。为证明解决方案的有效性,与其他的新闻推荐算法进行了对比,结果显示论文算法在F1指标上约提高了14%。 Recommendation system has been applied to all walks of life,and news recommendation has emerged as the times require.Users usually read news in the form of time sequence.However,traditional news recommendation algorithms seldom consider the time sequence characteristics of users browsing behavior.Therefore,it can not effectively predict the next news that users read.To solve this problem,the paper incorporates hidden Markov model into news recommendation algorithm.According to the user's reading trajectory,it can find the news with the highest reading probability at the next moment.On this basis,it adds the state dwell time element to extend the five elements of hidden Markov model to six elements to improve the accuracy of recommendation.To prove the effectiveness of our solution,it compares with other news recommendation algorithms and finds that our algorithm increased by about 14%on the F1.
作者 张丹 周从华 ZHANG Dan;ZHOU Conghua(School of Computer Science and Telecommunication Engineering,Jiangsu University,Zhenjiang 212013)
出处 《计算机与数字工程》 2020年第10期2332-2337,共6页 Computer & Digital Engineering
关键词 新闻推荐 时间序列 隐马尔可夫模型 阅读轨迹 驻留时间 news recommendation time sequence hidden Markov model reading trajectory dwell time
  • 相关文献

参考文献4

二级参考文献72

  • 1AWAD M,ISSA K.Prediction of user's web-browsing behavior:application of markov model[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2012,42(4):1131-1142.
  • 2SAHOO N,VIR S,MUKHOPADHYAY T.A hidden Markov model for collaborative filtering[J].MIS Quarterly-Management Information Systems,2012,36(4):13-29.
  • 3BHAWNA N,SURESH J.Generating a new model for predicting the next accessed web page in web usage mining[A].Proceeding in 3rd International Conference on Emerging Trends in Engineering and Technology[C].India,2010.485-490.
  • 4MIKA P.Ontologies are us:a unified model of social networks and semantics[J].Web Semantics:Science,Services and Agents on the World Wide Web,2007,5(1):5-15.
  • 5OARD DW,KIM J.Implicit feedback for recommender systems[A].Proceeding of the AAAI Workshop on Recommender Systems[C].USA,1998.81-83.
  • 6BORGES J,LEVENE M.Data mining of user navigation patterns[A].Proceedings of the 1999 KDD Workshop on Web Mining[C].San Diego California,1999.92-111.
  • 7LIU Y T,LIU T Y,GAO B,et al.Browserank:letting web users vote for page importance[A].Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval[C].Singapore,2008.451-458.
  • 8JOSEPH A,JOHN R.Recommender systems:from algorithms to user experience[J].User Model User-Adap Inter,2012,22:101-123.
  • 9LICHTENWALTER R N,LUSSIER J T,CHAWLA N V.New perspectives and methods in link prediction[A].Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data mining[C].USA,2010.243-252.
  • 10KNIJNENBURG B P,WILLEMSEN M C,GANTNER Z,et al.Explaining the user experience of recommender systems[J].User Model User-Adap Inter,2012,22:441-504.

共引文献17

同被引文献30

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部