期刊文献+

大型氦低温制冷机研制进展 被引量:7

Development of Large Helium Cryo-plants
下载PDF
导出
摘要 大型氦低温制冷设备是前沿科技研究、高技术应用等领域必需的支撑装备。中国科学院理化技术研究所在国家重大科研装备研制专项的支持下,先后开展了20 K、4.5 K、2.0 K大型制冷机的研制工作,突破了高速氦透平膨胀机稳定性、超低漏率铝板翅式换热器设计制造、高精滤油系统设计等关键技术,成功研制出2 kW@20 K氦制冷机、10 kW@20 K氦制冷机、40 L/h氦液化器、250 W@4.5 K氦制冷机、200 W@4.5 K氦制冷机等系列化的大型氦低温制冷设备。目前,2.5 kW@4.5 K/500 W@2 K氦制冷机的研制工作已接近尾声:已在4 K系统获得4.5 K下2.716 kW的制冷量,在2 K系统获得1.9 K下510.6 W的制冷量,系统的稳定性考核正在进行中。未来还将开展4.5 K万瓦级超大型制冷机的研制工作。 Large scale helium cryo-plant is the necessary support equipment in the fields of cutting-edge scientific research and high-tech application.With the support of the national major scientific research equipment development project,TIPC has successively carried out the research and development of 20 K,4.5 K and 2.0 K large-scale cryo-pants,breaking through the key technologies such as the stability of high-speed helium turbine expanders,the design and manufacture of ultra-low leakage aluminum plate-fin heat exchangers,the design of high-precision oil filtering system,and successfully developed 2 kW@20 K helium cryo-plant,10 kW@20 K helium cryo-plant,40 L/h helium liquefiers,250 W@4.5 K helium cryo-plant,200 W@4.5 K helium cryo-pant,etc.At present,the development of 2.5 kW@4.5K/500 W@2 K helium cryo-plant is close to the end.The cooling capacity of 2.716 kW@4.5 K and 510.6 W@4.5 K have been obtained,the stability test of the system is in progress.In the future,the research and development of several tens of 4.5K class super large cryo-plant will be carried out.
作者 刘立强 LIU Liqiang(Technical Institute of Physics and Chemistry,CAS,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《真空与低温》 2020年第6期471-475,共5页 Vacuum and Cryogenics
基金 国家重大科研装备研制项目(ZDYZ2014-1) 中国科学院知识创新工程重要方向项目(YYYJ-1004)。
关键词 大型低温系统 氦制冷 透平膨胀机 large cryogenic system helium refrigeration turbine expander
  • 相关文献

参考文献5

二级参考文献15

  • 1李静,程光旭,崔晓迷,张兵,彭文莉.鲁奇合成氨系统故障树模型及共因失效分析[J].化工自动化及仪表,2007,34(1):16-23. 被引量:6
  • 2Lebrun. Large cryogenic Helium refrigeration system for the LHC[R]. Switzerland. [s. n. ], LHC Project Report, 2003,629.
  • 3Kalinin V, Tada E, Millet E, et al. ITER cryogenic system[J]. Fusion Engineering and Design, 2006, 81: 2589 -2595.
  • 4Kimura N, Ohhata H, Okamura T, et al. Development of a variable quench pressure relief valve for superconducting magnet system [J]. Cryogenic, 2011, 51:465 - 469.
  • 5Miller F K, Brisson J G. Development of a low- dissipation valve for use in a cold-cycle dilution refrigerator[J]. Cryogenic, 1999,39 : 859 - 863.
  • 6Weilert M, Hahn I, Barmatz M, et al. Progress on a small multi-cycling cryogenic fluid flow valve [J]. Cryogenic, 2002, 41: 813- 816.
  • 7Chagovets V K, Rudavskii E Y, Taubenteuther K U, et al. A cold valve for superfluid helium[J]. Physica B, 2000,284 - 288 : 2045 - 2046.
  • 8Rae P J, Dattelbaum D M. The properties of poly (tet- rafluoroethylene) (PTFE) in compression[J]. Polymer, 2004,45 : 7615 - 7625.
  • 9Bozet J L. Modeling of friction and wear for designing cryogenic valves[J]. Tribology International, 2001,34: 207 - 215.
  • 10Murari A, Vinante C, Monnari M. Compositon of PEEK and VESPEL SP1 characteristics as vacuum seals for fusion applications[J]. Vacuum, 2002, 65: 137 - 145.

共引文献18

同被引文献81

引证文献7

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部