期刊文献+

基于茶蛋白质组学数据分析植物亚细胞定位预测软件的应用 被引量:2

Application analysis of predictors for plant protein subcellular localization based on proteome data of Camellia sinensis(L.)O.Ktze.
下载PDF
导出
摘要 以500个茶(Camellia sinensis(L.)O.Ktze.)叶片的蛋白质作为数据集,比较TargetP、WoLF PSORT、LocTree和Plant-mPLoc 4种软件预测亚细胞定位的可信度和灵敏度。结果显示,4种软件预测可信度均高于80%,依次排序为TargetP>LocTree>WoLF PSORT>Plant-mPLoc。其中,LocTree对细胞质蛋白和分泌蛋白检测灵敏度最高,但对叶绿体蛋白灵敏度最低;Plant-mPLoc检测核蛋白最灵敏,但对细胞质蛋白最不敏感;TargetP检测叶绿体蛋白最灵敏,但仅能区分3个亚细胞器官;WoLF PSORT对分泌蛋白检测灵敏度最低,但对其他蛋白均较灵敏。基于上述结果,该研究针对4种软件提出了合理的使用建议。 Several predictors of subcellular localization have been developed,with high-throughput and rapid prediction of protein subcellular localization successfully achieved.However,these predictors also have some disadvantages.Here,using 500 proteins identified from the proteome of Camellia sinensis(L.)O.Ktze.as a dataset,the reliability and sensitivity of subcellular localization predictors were compared,including with TargetP,WoLF PSORT,LocTree,and Plant-mPLoc.Results demonstrated that the prediction reliability of the four predictors exceeded 80%,in the order TargetP>LocTree>WoLF PSORT>Plant-mPLoc.Moreover,among the four predictors,LocTree showed the highest sensitivity for cytoplasmic and secretory proteins,but lowest for chloroplast proteins;Plant-mPLoc was most sensitive to nucleoproteins and most insensitive to cytoplasmic proteins;TargetP was most sensitive to chloroplast proteins,but could only distinguish three subcellular organelles;and WoLF PSORT showed high insensitivity to secretory proteins but high recognition of non-secretory proteins.Based on the aforementioned results,we discuss potential uses of the four predictors,which will provide a reference for high-efficiency prediction of protein subcellular localization.
作者 刘艳丽 周媛 曹丹 马林龙 龚自明 金孝芳 Liu Yan-Li;Zhou Yuan;Cao Dan;Ma Lin-Long;Gong Zi-Ming;Jin Xiao-Fang(Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan 430209, China;Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China)
出处 《植物科学学报》 CAS CSCD 北大核心 2020年第5期671-677,共7页 Plant Science Journal
基金 湖北省自然科学基金项目(2019CFB600)。
关键词 蛋白质 亚细胞定位 预测 Camellia sinensis Protein Subcellular localization Prediction
  • 相关文献

参考文献6

二级参考文献154

共引文献93

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部