摘要
图信号处理(GraphSignalProcessing,GSP)使用和扩展信号处理的处理手段,以处理定义于不规则图结构上的数据。文中介绍图信号处理的研究背景及其研究意义,对图信号处理中图信号、图移位算子、图傅里叶变换以及图滤波器等几个重要的基本概念进行了阐释。目前图信号处理研究极其活跃,已经涵盖很多方面,文中着重对其中3个方向的研究进展进行了梳理与分析,包括图信号的采样与重建、图结构的学习以及图滤波器设计。最后,对图信号处理相关研究进行了展望,提出了若干值得进一步研究的问题。
The graph signal processing(GSP)is an important tool for processing data defined in irregular graph domains.Firstly,the background and the research significance of GSP are explained.Then,the basic definitions are introduced,including the concepts of graph signal,graph shift operator,graph Fourier transform,and graph filter.Finally,current research progress of GSP is analyzed,including graph signal sampling and reconstruction,graph structure learning,and graph filter design.Based on the current research status,the future of GSP is prospected and several issues worthy of further study are pointed out.
作者
王保云
李沛
WANG Baoyun;LI Pei(National Engineering Research Center for Communication and Network Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;College of Telecommunications&Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处
《南京邮电大学学报(自然科学版)》
北大核心
2020年第5期112-116,共5页
Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金
国家自然科学基金(61971238)资助项目。
关键词
图信号处理
非规则数据
图傅里叶变换
graph signal processing(GSP)
irregular data
graph Fourier transform