期刊文献+

基于大数据与机器学习的安检通道开放数预测

Prediction of Security Channel Opening Number based on Big Data and Machine Learning
下载PDF
导出
摘要 有效地预测安检通道开放数,对合理制定机场安检排班有重要的指导意义,能够提升机场安全保障和旅客体验。随着大数据的浪潮,大数据机器学习在各领域已有广泛的应用,本文将其应用到了机场安检通道开放数的预测上。结合安检人数历史数据和航班信息数据,实现对安检人数的预测,进而实现安检通道口的预测,并对比多种算法预测效果。 Effectively predicting the opening number of security inspection channels has important guiding significance for the reasonable formulation of airport security inspection schedules,and can improve airport security and passenger experience.With the wave of big data,big data machine learning has been widely used in various fields.This article applies it to the prediction of the opening number of airport security channels.Combining the historical data of security inspection number and flight information data,it can realize the prediction of security inspection number,and then realize the prediction of security inspection channel,and compare the prediction effects of various algorithms.
作者 夏侯康 王丽娟 林勖 江敏婷 罗浩贤 XIA Hou-kang;WANG Li-juan;LIN Xie;JIANG Min-ting;LUO Hao-xian(Guangdong Airport Baiyun Information Technology Co.,Ltd.Guangzhou,Guangdong 510032)
出处 《软件》 2020年第10期137-140,共4页 Software
关键词 安检通道数 大数据 机器学习 XGBoost Number of security check channels Big data Machine learning XGBoost
  • 相关文献

参考文献5

二级参考文献23

  • 1[美]AnthonyT.Velte,等,著.周庆辉,等,译.云计算实践指南[M].北京:机械工业出版社,2010.
  • 2Dean,Jeffrey & Ghemawat, Sanjay."MapRe- duce: Simplified Data Processing on Large Clusters" [J].Volume 51 Issue 1, January 2008.
  • 3Tom Mitchell. Machine Learning. McGraw Hill Higher Education, 1997.
  • 4Olivier C, Bernhard S, Alexander Z. Semi-Supervised Learning. The MIT Press, 2006.
  • 5Zhu X J. Semi-Supervised Learning Literature Survey. Madison: University of Wisconsin, 2008.
  • 6Zhou Z H. Ensemble Methods: Foundations and Algorithms. Boca Raton, FL: Chapman & HaI1/CRC, 2012.
  • 7Freund Y, Schapire R E. A decision theoretic generalization of online learning and application to boosting. Journal of Computer and System Sciences, 1997, 55(1): 119-139.
  • 8Breiman L. Bagging predictors. Machine Learning, 1996, 24(2): 123- 140.
  • 9Koller D, Friedman N. Probabilistie Graphical Models: Principles and Techniques. The MIT Press, 2009.
  • 10Darwiche A. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, 2009.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部