期刊文献+

油田大数据分析模式研究 被引量:1

Research on Big Data Analysis of Digital Oilfield
下载PDF
导出
摘要 随着数字化油田的建设,围绕石油勘探、开采、储运、销售等业务,产生了大量的数据,且数据结构复杂,数据产生的速度极快,数据价值密度较低。传统的文本分析已经无法完全胜任,如果能将大数据分析引入数字化油田的开发过程,不仅可以有效管理数据,还能对海量数据进行深层次的挖掘和分析。基于此,本文针对生产中遇到的数据安全问题、数据存储问题、数据分析问题、分级工具匮乏等问题,进行有针对性分析,并提出相应的解决方案。 With the construction of digital oilfield,a large number of data have been generated around the business of oil exploration,exploitation,storage and transportation,sales and so on.The data structure is complex,the speed of data generation is extremely fast,and the data value density is low.Traditional text analysis is not fully competent.If big data analysis can be introduced into the development process of digital oilfield,it can not only effectively manage data,but also carry out deep-seated mining and analysis of massive data.Based on this,this paper analyzes the data security problems,data storage problems,data analysis problems,lack of classification tools,and puts forward the corresponding solutions.
作者 张云志 Zhang Yunzhi(Information Center of Storage and Transportation Sales branch of Daqing Oilfield Co.,Ltd.,Daqing Heilongjiang 163453,China)
出处 《信息与电脑》 2020年第19期4-6,共3页 Information & Computer
关键词 大数据 数据分析 数据安全 PYTHON big data data analysis data security Python
  • 相关文献

参考文献1

二级参考文献42

  • 1[OL].<http://hadoop.apache.org.>.
  • 2WinterCorp: 2005 TopTen Program Summary. http:// www. wintercorp, com/WhitePapers/WC TopTenWP. pdf.
  • 3TDWI Checklist Report: Big Data Analytics. http://tdwi. org/research/2010/08/Big-Data-Analytics, aspx.
  • 4Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. SIGMOD Rec, 1997,26(1): 65-74.
  • 5Madden S, DeWitt D J, Stonebraker M. Database parallelism choices greatly impact scalability. DatabaseColumn Blog. http://www, databasecolumn, com/2007/10/database-parallelism-choices, html.
  • 6Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters//Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI ' 04). San Francisco, California, USA, 2004: 137-150.
  • 7DeWitt D J, Gerber R H, Graefe G, Heytens M L, Kumar K B, Muralikrishna M. GAMMA--A high performance dataflow database machine//Proceedings of the 12th International Conference on Very Large Data Bases (VLDB' 86). Kyoto, Japan, 1986:228-237.
  • 8Fushimi S, Kitsuregawa M, Tanaka H. An overview of the system software of a parallel relational database machine// Proceedings of the 12th International Conference on Very Large DataBases(VLDB'86). Kyoto, Japan, 1986:209-219.
  • 9Brewer E A. Towards robust distributed systems//Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing (PODC' 00). Portland, Oregon, USA, 2000:7.
  • 10http: //www. dbms2, com/2008/08/26/known-applications of mapreduce/.

共引文献615

同被引文献17

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部