摘要
从传导问题中获得了一类非齐次椭圆方程Dirichlet问题的极限形式.当2个理想导体之间的距离足够小时,建立其最优的全局梯度估计,从而给出了电场强度的爆破率.
Limit form of a class of non-homogeneous elliptic equation Dirichlet problems is obtained from conduction problem,to establish optimal global gradient estimate when distance between two perfect conductors is small enough.Blow-up rates of electric field strength are given in all dimensions.
作者
潘星辰
保继光
PAN Xingchen;BAO Jiguang(Qingdao No.6 middle school,Shandong Province,266515,Qingdao,Shandong,China;School of Mathematical Sciences,Beijing Normal University,100875,Beijing,China)
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第5期629-636,共8页
Journal of Beijing Normal University(Natural Science)
基金
supported in part by the National Natural Science Foundation of China(11871102)。
关键词
分片常系数
非齐次椭圆方程
超导问题
最优的梯度估计
piecewise-constant coefficients
inhomogeneous elliptic equation
limiting form
optimal gradient estimates