摘要
为了解决复杂棉田环境中的多模态棉铃计数问题,提出一种基于密度等级分类的田间棉铃计数算法.首先采用密度等级分类估计器对图像中的全局上下文信息进行编码;然后利用多列结构的密度图估计器将输入图像转换为高维特征映射;最后通过特征融合神经网络,将分类信息与高维特征映射相结合,以生成高质量的密度图,进而实现对田间棉铃进行计数.此外,构建了一个包含412幅田间棉铃图像的数据集,该数据集可根据不同的环境、年份和地域条件进行划分,以进行实验和对比.实验结果表明,所提出的算法达到了更低的计数误差,其有效性和鲁棒性均优于其他对比算法.
To solve the problem of multi-mode cotton boll counting in the complicated environment,an in-field cotton boll counting algorithm based on density classification is proposed.Firstly,the algorithm encodes the global context information with a density level classification estimator.Then the input images are converted into high-dimensional feature maps by density map estimator with multi-column structure.Finally,through the feature fusion neural network,the classification information is combined with high-dimensional feature maps to generate high-quality density map,and then the cotton bolls are counted.In addition,a new dataset within 412 in-field cotton boll images is constructed for experiment and comparison,which can be divided by different environment,year and region conditions.Experimental results demonstrate that the proposed algorithm achieves a lower counting error,and better effectiveness and robustness than other comparison algorithms.
作者
黄紫云
李亚楠
王海晖
Huang Ziyun;Li Yanan;Wang Haihui(School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205;Hubei Province Key Laboratory of Intelligent Robot,Wuhan Institute of Technology,Wuhan 430073)
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2020年第11期1832-1839,共8页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(61906139)
湖北省自然科学基金(2019CFB173)
武汉工程大学智能机器人湖北省重点实验室开放基金(HBIR201903).
关键词
棉铃
目标计数
密度等级分类
密度图
cotton boll
object counting
density level classification
density map