摘要
研究了一类二阶波动方程的边界控制问题。通过构建适当的Lyapunov泛函,得到了边界反馈控制律。在该反馈控制律的作用下,方程的状态向量在H1(0,1)×L2(0,1)空间上全局渐近稳定。最后,通过仿真算例验证了理论方法的有效性。
This paper investigates the boundary control for a class of second-order wave equations.The boundary feedback control laws were obtained by constructing an appropriate Lyapunov functional.Under the action of the boundary feedback control laws,the state vectors of the equations were globally asymptotically stable on H1(0,1)×L2(0,1)space.Finally,a simulation example was conducted to verify the validity of the theoretical method.
作者
张丹
傅勤
郁鹏飞
陈振杰
ZHANG Dan;FU Qin;YU Pengfei;CHEN Zhenjie(School of Mathematical Sciences,SUST,Suzhou 215009,China)
出处
《苏州科技大学学报(自然科学版)》
CAS
2020年第4期19-24,共6页
Journal of Suzhou University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(11971343)。
关键词
边界控制
分布参数系统
二阶波动方程
LYAPUNOV泛函
全局渐近稳定
boundary control
distributed parameter systems
second-order wave equations
Lyapunov functional
globally asymptotically stable