期刊文献+

金纳米颗粒掺杂Mo-Ni基双金属氢氧化物电极材料

Gold nanoparticles doped Mo-Ni bimetallic hydroxide electrode material
下载PDF
导出
摘要 以硝酸镍与钼酸钠为原材料,经过一步水热法和金纳米颗粒(AuNP)物理沉积法,制备AuNP掺杂的3D孔道结构Mo-Ni基双金属氢氧化物(Mo(OH)6/Ni(OH)2-AuNP)。通过扫描电子显微镜(SEM)观察材料表面形貌前后变化,以及X射线衍射(XRD)仪研究材料晶体结构。Mo(OH)6/Ni(OH)2-AuNP作为电化学活性物质,与活性炭负极材料组装为非对称型超级电容器。采用循环伏安(CV)、恒流充放电(GCD)和电化学阻抗谱(EIS)对其电化学性能进行测试。结果表明,Mo(OH)6/Ni(OH)2-AuNP具有3D孔状的网络结构,并展现出优异的电化学性能。在电流密度为0.5 A·g^-1时比电容高达1696.0 F·g^-1,其组装的非对称器件在0.5 A·g^-1下比电容也可达到120 F·g^-1。 The gold nanoparticle(AuNP)-doped bimetallic hydroxide of Mo(OH)6/Ni(OH)2 with 3D pore network structure was prepared by one-step hydrothermal method and AuNP physical sedimentation method.Scanning electron microscope(SEM)was used to observe the surface morphology of the materials,and X-ray diffraction(XRD)was used to study the crystal structure of the material.The prepared Mo(OH)6/Ni(OH)2-AuNP was used as the active material and assembled with the anode material(activated carbon)to form an asymmetric supercapacitor.Cyclic voltammetry(CV),galvanostatic charging-discharging(GCD)and electrochemical impedance spectroscopy(EIS)were used to test its electrochemical performance.The results show that Mo(OH)6/Ni(OH)2-AuNP has 3D porous network structure.The specific capacitance of Mo(OH)6/Ni(OH)2-AuNP3 is up to 1696.0 F·g^-1 at the current density of 0.5 A·g^-1,and the specific capacitance of the assembled asymmetrical supercapacitor can reach 120 F·g^-1 at 0.5 A·g^-1.
作者 姬曦威 王琦 尉梅梅 童玲善 冉奋 JI Xiwei;WANG Qi;YU Meimei;TONG Lingshan;RAN Fen(State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals,School of Material Science and Engineering,Lanzhou University of Technology,Lanzhou 730050,China)
出处 《电子元件与材料》 CAS CSCD 北大核心 2020年第11期1-8,共8页 Electronic Components And Materials
基金 国家自然科学基金(51203071,51763014) 兰州理工大学红柳杰出青年学者项目。
关键词 氢氧化镍 氢氧化钼 双金属氢氧化物 纳米金颗粒(AuNP) 电极材料 超级电容器 nickel hydroxide molybdenum hydroxide bimetallic hydroxide gold nanoparticle electrode material supercapacitor
  • 相关文献

参考文献4

二级参考文献54

  • 1E1-Kady, M. F. Strong, V. Dubin, S. Kaner, R. B. Science 2012, 335, 1326. doi: 10.1126/science.1216744.
  • 2Simon, P. Gogotsi, Y. Nat. Mater. 2008, 7, 845. doi: 10.1038/ nmat2297.
  • 3Wen, C. M. Wen, Z. Y. You, Z. Wang, X. F. Chin. J. Chem. Phys. 2012, 25, 209. doi: 10.1088/1674-0068/25/02/209-213.
  • 4Wang, X, F. You, Z. Ruan, D. B. Chin. J, Chem. Phys, 2005, 18, 635.
  • 5Kim, I. H. Kim, K. B. J. Electrochem. Soc. 2006, 153, A383.
  • 6Nagarajan, N. Cheong, M. Zhitomirsky, I. Mater. Chem. Phys. 2007, 103 (1), 47. doi: 10.1016/j.matchemphys.2007.01.005.
  • 7Fischer, A. E. Pettigrew, K. A. Rolison, D. R. Stroud, R. M. Long, J. W. Nano Lett. 2007, 7 (2), 281.
  • 8Sharma, R. K. Oh, H. S. Shul, Y. G. Kim, H. J. Power Sources 2007, 173, 1024. doi: 10.1016/j.jpowsour.2007.08.076.
  • 9Huang, H. J. Wang, X. Nanoscale 2011, 3, 3185. doi: 10.1039/ clnr10229j.
  • 10Wang, H. L. Casalongue, H. S. Liang, Y. Y. Dai, H. J. J. Am. Chem. Soc. 2010, 132, 7472. doi: 10.1021/ja102267j.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部