期刊文献+

基于时间序列聚类的轨迹停留点检测算法 被引量:4

Trajectory stops detection algorithm based on time series clustering
下载PDF
导出
摘要 针对采样不规则轨迹的停留点检测准确性不高的问题,提出了一种基于时间序列聚类的停留点检测算法。首先基于数据场理论设计了一种综合考虑时空特性的混合特征密度测量方法,然后根据停留点中心密度比入口大的特性,采用过滤—精炼策略提取停留点。在过滤阶段,将时间连续且满足最小密度阈值的点作为候选停留点。在精炼阶段,通过最大阈值筛选出实际停留点。实验结果表明,该方法能够有效检测采样不规则轨迹中的停留点,相较于已有方法具有较高的准确性和较低的时间消耗。 According to the shortcoming that the low accuracy during detect the stops of sampling irregular trajectory,this paper proposed an algorithm based on the time series clustering to find the stops in trajectories.Firstly,based on the data field theory,this work designed a hybrid feature density measurement method considering the spatial and temporal characteristics.Then,this method used the filtering-refining strategy to extract stops based on the feature that the center of stop was denser than the entrance.In the filtering phase,some points that were continuous in time and met the minimum density threshold was taken as back up stops.During the refining phase,it filtered true stops according to the maximum threshold.The experimental results show that the proposed method can effectively detect the staying points in the sampling irregular trajectory.It not only has lower time consumption than the existing methods,also has higher accuracy.
作者 兰志辉 陈莉 段治州 Lan Zhihui;Chen Li;Duan Zhizhou(School of Information Science&Technology,Northwest University,Xi’an 710127,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第12期3557-3560,共4页 Application Research of Computers
关键词 轨迹数据 停留点 数据场 时间序列聚类 trajectory stop data field time series clustering
  • 相关文献

参考文献5

二级参考文献194

  • 1马林兵,陈晓翔.LBS服务中的位置感知计算体系研究[J].中山大学学报(自然科学版),2005,44(B06):318-321. 被引量:9
  • 2潘晓,肖珍,孟小峰.位置隐私研究综述[J].计算机科学与探索,2007,1(3):268-281. 被引量:65
  • 3赵冬青,吕志平,张西光.基于位置的服务中定位信息的传输[J].测绘通报,2006(5):27-30. 被引量:6
  • 4Yang B, Lu H, Jensen C S. Scalable continuous range monitoring of moving objects in symbolic indoor space//Proeeedings of the 18th ACM Conference on Information and Knowledge Management. Hong Kong, China, 2009:671-680.
  • 5Wolfson O, Sistla P A, Chamberlain S, Yesha Y. Updating and querying databases that track mobile units. Distributed and Parallel Databases, 1999, 7(3): 257-387.
  • 6Pfoser D, Jensen C S. Capturing the uncertainty of movingobjects representations//Proceedings of the 6th International Symposium on Advances in Spatial Databases. Hong Kong, China, 1999:111-132.
  • 7Cheng R: Kalashnikov D V, Prabhakar S. Querying imprecise data in moving object environments. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(9): 1112- 1127.
  • 8Zhang M, Chen S, Jensen C S, Ooi B C, Zhang Z. Effectively indexing uncertain moving objects for predictive queries// Proceedings of the VLDB Endowment. Lyon, 2009, 2 (1): 1198-1209.
  • 9Cheng R, Chen L, Chen J, Xie X. Evaluating probability threshold k-nearest-neighbor queries over uncertain data// Proceedings of the 12th International Con/erence on Extending Database Technology. Saint Petersburg, 2009 :672-683.
  • 10Tao Y, Cheng R, Xiao X, Ngai W K, Kao B, Prabhakar S. Indexing multi-dimensional uncertain data with arbitrary probability density funetions//Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim, 2005 : 922-933.

共引文献303

同被引文献47

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部