期刊文献+

一种基于改进的巴氏系数的协同过滤推荐算法 被引量:2

Collaborative filtering recommendation algorithm based on improved Bhattacharyya coefficient
下载PDF
导出
摘要 传统基于邻居的协同过滤推荐方法必须完全依赖用户共同评分项,且存在极为稀疏的数据集中预测准确性不高的问题。巴氏系数协同过滤算法通过利用一对用户的所有评分项进行相似性度量,可以有效改善上述问题。但该种方法也存在两个很明显的缺陷,即未考虑两个用户评分项个数不同时的情况以及没有针对性地考虑用户偏好。在巴氏系数协同过滤算法的基础上进行了改进,既能充分利用用户的所有评分信息,又考虑到用户对项目的积极评分偏好。实验结果表明,改进的巴氏系数协同过滤算法在数据集上获得了更好的推荐结果,提高了推荐的准确度。 The traditional neighbor-based collaborative filtering recommendation method has to rely entirely on the common scoring items of users,and the accuracy of prediction in extremely sparse data sets is not high.Bhattacharyya coefficient collaborative filtering algorithm can effectively improve the above problems by using similarity measures for all the score items of a pair of users.But there are two obvious drawbacks to this approach,one is that it fails to consider the case that the number of scoring items of two users is not the same,the other is that there is no targeted consideration for user preferences.This paper improved the Bhattacharyya coefficient collaborative filtering algorithm,which could make full use of all the user’s rating information and consider the user’s positive rating preference for the project.Comparison of experimental results show that the improved Bhattacharyya coefficient collaborative filtering algorithm obtains better recommendation results on the dataset and improves the accuracy of the recommendation.
作者 王伟 周刚 Wang Wei;Zhou Gang(Dept.of Management&Economics,Tianjin University,Tianjin 300072,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第12期3569-3571,共3页 Application Research of Computers
关键词 协同过滤 巴氏系数协同过滤算法 相似性度量 collaborative filtering(CF) Bhattacharyya coefficient collaborative filtering(BCF) similarity measure
  • 相关文献

参考文献6

二级参考文献23

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2Jaideep Jeyakar,R. Venkatesh Babu,K.R. Ramakrishnan.Robust object tracking with background-weighted local kernels[J]. Computer Vision and Image Understanding . 2008 (3)
  • 3Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2003
  • 4J. Ning,L. Zhang,D. Zhang.Robust mean-shift tracking with corrected background-weighted histogram. IET COMPUTER VISION . 2012
  • 5Qing Wang,Feng Chen,Wenli Xu.Object Tracking via Partial Least Squares Analysis. IEEE Transactions on Image Processing . 2012
  • 6Matthews I,Ishikawa T,Baker S.The template update problem. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2004
  • 7Dorin Comaniciu,Visvanathan Ramesh,Peter Meer.Real-time tracking of non-rigid objects using mean shift. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . 2000
  • 8C Yang,R Duraiswami,L Davis.Efficient mean-shift tracking via a new similarity measure. Computer Vision and Pattern Recognition . 2005
  • 9WU Yi,LIM Jong-woo,YANG Ming-hsuan.Online object tracking:a benchmark. Computer Vision and Pattern Recognition . 2013
  • 10Khalid MS,Malik MB.Biased nature of Bhattacharyya coefficient in correlation of gray-scale objects. International Symposium on Image and Signal Processing and Analysis . 2005

共引文献30

同被引文献14

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部