期刊文献+

基于机器学习数据流突变型服务功能链构建策略

Construction strategy of data stream mutation service function chain based on machine learning
下载PDF
导出
摘要 在SDN/NFV协同的未来网络架构下,针对增强移动宽带场景中因数据流突变造成的服务功能链低可用问题进行了研究,并提出了一种基于启发式闭环反馈算法的服务功能链动态构建策略。该算法分服务功能链的部署模块和反馈调整模块两部分。首先,基于资源优化模型实现服务功能链的初始化部署,其中对资源优化模型的求解选择利用遗传算法;然后,通过引入机器学习算法随机森林回归对当前服务功能链可承载的数据流量大小进行实时预测,以实现相应的反馈调整。整个服务功能链的构建策略是一种基于遗传和随机森林回归预测的启发式闭环反馈算法设计。仿真结果表明,在应对突变数据流时与现有的遗传和禁忌搜索算法相比,所提算法的用户接受率提高了12%,对底层资源的占用降低了19%。 In the enhanced mobile broadband scenario under SDN/NFV network architecture,this paper studied the problem of low availability of service function chain due to data stream mutation,and proposed a dynamic service function chain construction strategy based on heuristic closed-loop feedback algorithm.The algorithm had two parts,such as service function chain deployment module and feedback adjustment module.Firstly,it implemented the initial deployment of the service function chain based on the resource optimization model and used the genetic algorithm to solve the optimization model.Then,it used the random forest regression algorithm to predict the data traffic that could be carried by the current service function chain to achieve the corresponding feedback adjustment.Therefore,the whole service function chain construction strategy was a heuristic closed-loop feedback algorithm based on genetic algorithm and random forest regression.The simulation results show that compared with the existing genetic and tabu search algorithms,the proposed algorithm improves the user acceptance rate by 12%and the occupancy of the underlying resources by 19%.
作者 赵季红 季文君 曲桦 赵建龙 王珂 吴豆豆 Zhao Jihong;Ji Wenjun;Qu Hua;Zhao Jianlong;Wang Ke;Wu Doudou(School of Communications&Information Engineering,Xi’an University of Posts&Telecommunications,Xi’an 710121,China;School of Electronic&Information Engineering,Xi’an Jiaotong University,Xi’an 710054,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第12期3749-3752,3776,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61531013) 国家重大专项资助项目(2018ZX03001016)。
关键词 软件定义网络 网络功能虚拟化 服务功能链 机器学习 遗传算法 software defined network(SDN) network function virtualization(NFV) service function chain(SFC) machine learning genetic algorithm
  • 相关文献

参考文献4

二级参考文献94

  • 1Mckeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner J. OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 2008,38(2):69-74. [doi: 10.1145/1355734. 1355746].
  • 2Elliott C. GENI: Opening up new classes of experiments in global networking. IEEE Internet Computing, 2010,14(1):39-42.
  • 3Gavras A, Karila A, Fdida S, May M, Potts M. Future Internet research and experimentation: The FIRE initiative. ACM SIGCOMM Computer Communication Review, 2007,37(3):89-92. [doi: 10.114511273445.1273460].
  • 4JGN2plus. 2012. http://www.jgn.nict.go.jp/english/index.html.
  • 5SOFIA. 2012. http://fi.ict.ac.cn/research/sofia_overview.htm.
  • 6Yang L, Dantu R, Anderson T, Gopal R. Forwarding and Control Element Separation (ForCES) Framework. RFC 3746, 2004. http://tools.ietf.org/html/rfc3746.
  • 7Greenberg A, Hjalmtysson G, Maltz DA, Myers A, Rexford J, Xie G, Yan H, Zhan J, Zhang H. A clean slate 4D approach to network control and management. ACM SIGCOMM Computer Communication Review, 2005,35(5):41-54. [doi: 10.1145/1096536. 1096541].
  • 8Caesar M, Caldwell D, Feamster N, Rexford J, Shaikh A, Merwe J. Design and implementation of a routing control platform. In: Proc. of the 2rd USENIX Symp. on Networked Systems Design and Implementation (NSDI). Boston: USENIX Association, 2005. 15-28.
  • 9Casado M, Garfinkel T, Akella A, Freedman MJ, Boneh D, Mckeown N, Shenker S. SANE: A protection architecture for enterprise networks. In: Proc. of the 15th Conf. on USENIX Security Symp. Vancouver: USENIX Association, 2006. 137-151.
  • 10Casado M, Freedman MJ, Pettit J, Luo J, Mckeown N, Shenker S. Ethane: Taking control of the enterprise. In: Proc. of the SIGCOMM 2007. Kyoto: ACM Press, 2007. 1-12. [doi: 10.1145/1282380.1282382].

共引文献496

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部