期刊文献+

社交媒体文本信息多层次细粒度属性挖掘方法研究 被引量:7

Research on Multi-level Fine-grained Attribute Mining Method of Social Media Text Information
原文传递
导出
摘要 【目的/意义】本文基于社交媒体文本信息,对多层次细粒度属性挖掘方法进行了研究,为准确把握人们的观点和态度提供理论和技术支撑。【方法/过程】基于基础情感极性词典以及字符情感值计算方法,对社交媒体细粒度观点挖掘体系架构进行构建,以微博话题为实证案例对细粒度观点挖掘流程及体系功能模块进行研究和验证,并进行可视化展示,结果比较简洁、清晰、容易理解,说明该方法的有效性。【结果/结论】该研究分析并改进了用户观点统计指标,验证了文中提出的细粒度观点挖掘体系框图是对传统细粒度观点挖掘模型的进一步扩展,为实践层面提升社交媒体文本信息挖掘的科学合理性提供了理论及实践支撑。 【Purpose/significance】Based on the text information of social media, this paper studies the multi-level finegrained attribute mining method, providing theoretical and technical support for accurately grasping people’s views and attitudes.【Method/process】Based on the basic emotion polarity dictionary and the calculation method of character emotion value, the fine-grained view mining system architecture of social media is constructed. The micro blog topic is taken as an empirical case to study and verify the fine-grained view mining process and system function module, and the results are relatively simple, clear and easy to understand, which shows that the method is effective Sex.【Result/conclusion】The research analyzes and improves the statistical indicators of users’ opinions, and verifies that the proposed framework of finegrained viewpoint mining system is a further expansion of the traditional fine-grained viewpoint mining model, which provides theoretical and practical support for improving the scientific rationality of social media text information mining at the practical level.
作者 宋严 SONG Yan(School of Politics and Law,Changchun Normal University,Changchun 130032,China)
出处 《情报科学》 CSSCI 北大核心 2020年第11期98-103,共6页 Information Science
关键词 挖掘方法 细粒度 属性 社交媒体 信息抓取 mining method granularity attribute social media information capture
  • 相关文献

参考文献13

二级参考文献176

  • 1索琪,卢涛.基于关联规则的电子商务推荐系统研究[J].哈尔滨师范大学自然科学学报,2005,21(2):50-53. 被引量:8
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3Joseph A Konstan, Bradley N Miller,David Maltz,et al. Grou-pLens : Applying Collaborative Filtering to Usenet news [ J].Commun. ACM,1997,40(3) :77-87.
  • 4Yang S, Long B,Smole A,et al. Collaborative Competitive Filte-ring :Learning Recommender Using Context for User Choice[A]//Proceedings of the 34th International ACM SIGIR Confer-ence on Research and Development in Information Retrieval (SI-GIR 11)[C]. New York, NY, USA:ACM,2011:295-304.
  • 5Linden G,Smith B, York J Amazon. Com Recommendations:I-tem-to-item Collaborative Filtering[ J]. IEEE Internet Compu-ting,2003,7(1) :76-80.
  • 6Goldberg K,Roeder T, Gupta D, et al. Eigentaste: A ConstantTime Collaborative Filtering Algorithm[ J]. Information RetrievalJ,2001,4(2) :133-151.
  • 7Fabiano Belem,Eder Martins,Tatiana Pontes, et al. AssociativeTag Recommendation Exploiting Multiple Textual Features[A]//Proceedings of the 34th International ACM SIGIR Confer-ence on Research and Development in Information [ C]. NewYork, NY, USA: ACM, 2011:1033-1042.
  • 8Dong A,Zhang R, Kolari P,et al. Time is of the Essence : Impro-ving Recency Ranking Using Twitter Data[ A]. Proceedings ofthe 19th Int. Conf. on World Wide Web (WWW) [C]. NewYork, NY, USA:ACM,2010:331-340.
  • 9Chen J, Naim R, Nelson L, et al. Short and Tweet: Experi-ments on Recommending Content From Information Streams[A]. Proceedings of the 28 th International Conference on HumanFactors in Computing Systems (CHI 10) [ C]. New York, NY,USA: ACM, 2010: 1185-1194.
  • 10Fabian Abel, Qi Gao, Geert-Jan Houben, et al. Analyzing UserModeling on Twitter for Personalized News Recommendations[A]// Proceedings of the 19th International Conference[C].Girona, Spain:UMAP,2011 :1-12.

共引文献166

同被引文献88

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部