摘要
提出了一种基于深度学习的DNA结合蛋白识别方法(DBP-DenseNet)。以稠密网络代替传统的金字塔式卷积神经网络(CNN)结构,将上一层的特征信息整合到下一层,利用层间的特征融合来学习整个氨基酸序列的综合特征;由双向长短期记忆网络(Bi-LSTM)负责在氨基酸序列上下文中获取长期依赖关系。实验结果表明,稠密连接可以有效提高模型的特征表达能力。
In this paper,a DNA binding protein recognition method based on deep learning(DBP DenseNet)is proposed.A dense network is used to replace the traditional pyramid convolutional neural network(CNN)structure.The feature information of the upper layer is integrated into the next layer,and the comprehensive features of the whole amino acid sequence are learned by the feature fusion between layers.The Bi-LSTM is responsible for obtaining the long-term dependence in the context of amino acid sequences.Experimental results show that dense connection can effectively improve the ability of feature representation.
作者
李国斌
杜秀全
李新路
吴志泽
LI Guobin;DU Xiuquan;LI Xinlu;WU Zhize(School of Artificial Intelligence and Big Data,Hefei University,Hefei 230601,China;Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education,Hefei 230601,China;School of Computer Science and Technology,Anhui University,Hefei 230601,China)
出处
《重庆科技学院学报(自然科学版)》
CAS
2020年第5期81-85,共5页
Journal of Chongqing University of Science and Technology:Natural Sciences Edition
基金
安徽省自然科学基金青年项目“面向大规模多模态视频的人体行为融合识别研究”(1908085QF)
安徽高校自然科学研究重点项目“基于群智能算法的大规模无线传感器网络能量高效路由协议研究”(KJ2019A0835)
合肥学院科研发展项目“基于教育领域的大数据服务关键技术研究”(18ZR19ZDA)。
关键词
DNA结合蛋白预测
词嵌入
稠密网络
双向长短期记忆网络
DNA binding protein prediction
word embedding
dense network(DenseNet)
bi-directional long short-term memory network(Bi-LSTM)