摘要
Apriori算法在运行时需多次扫描数据库,在数据库比较庞大时,则会导致运行效率降低。在设计的图书智能推荐系统中对Apriori算法进行了改进,根据读者的历史借阅行为,挖掘读者借阅图书之间的关联性,从而实现图书智能推荐。介绍了改进算法在图书智能推荐系统中的应用。
Apriori algorithm needs to scan the database for several times,when the database is relatively large,which may result in inefficient running.The designed Book Intelligent Recommendation System has improved the Apriori algorithm and it can mine the association between readers′borrowed books according to the historical borrowing behavior of readers,thereby realizing the intelligent recommendation of books.This paper introduces the application of the improved algorithm in the Book Intelligent Recommendation System.
作者
陈锦
CHEN Jin(Quanzhou Economic and Trade Technical College,Quanzhou Fujian 362000,China)
出处
《重庆科技学院学报(自然科学版)》
CAS
2020年第5期91-95,共5页
Journal of Chongqing University of Science and Technology:Natural Sciences Edition
基金
2018年福建省教育厅中青年教师教育科研项目“基于大数据分析的图书馆智能服务系统的研究与实现”(JZ180945)。