期刊文献+

人工智能影像组学在肝细胞癌精准诊治中的研究进展 被引量:5

Research progress of radiomics with artificial intelligence in precise diagnosis and treatment of hepatocellular carcinoma
原文传递
导出
摘要 随着人工智能时代的到来,影像组学作为一个新兴的领域,它从不同类型的影像学图像中提取高通量的成像数据,建立预测模型,从而以非侵入的方式指导临床治疗和改善疾病预后。虽然该领域目前尚处于发展初期,缺乏规范化的流程及评估标准,但仍然是非常有发展前途的研究方向。肝细胞癌的影像组学分析将有助于肿瘤的早期诊断、治疗方案的预后评估等,从而推进临床治疗策略的持续改进,提供精准化治疗以提高患者的生存率和治愈率。现介绍肝细胞癌的影像组学研究流程,并讨论其在肝细胞癌精准诊治中的应用进展、面临的挑战和未来的发展方向。 With the advent of the era of artificial intelligence,radiomics is an emerging field in which high-throughput imaging data are extracted from different types of images to model and predict clinical prognosis in a non-invasive manner.Currently,this field is in its initial stage of development and lacks standardized assessment criteria,but still remains a promising tool for the future research direction.Radiomics analysis of hepatocellular carcinoma will aid in the early diagnosis,prognostic evaluation and treatment plan,thereby promoting the continuous improvement of clinical treatment strategies,and providing precise treatment methods to improve the survival rate and cure rate of patients.This article introduces the radiomics research process of hepatocellular carcinoma,and discusses its application progress,challenges and future development directions in the precise diagnosis and treatment of hepatocellular carcinoma.
作者 李永海 荚卫东 Li Yonghai;Jia Weidong(Department of General Surgery,The First People’s Hospital of Hefei,Hefei 230001,China;Division of Liver Surgery,the First Affiliated Hospital of USTC,Division of Life Sciences and Medicine,University of Science and Technology of China,Hefei 230001,China)
出处 《中华肝脏病杂志》 CAS CSCD 北大核心 2020年第11期905-909,共5页 Chinese Journal of Hepatology
基金 安徽省重点研究与开发计划项目(1704a0802150)。
关键词 肝细胞癌 人工智能 影像组学 治疗进展 Hepatocellular carcinoma Artificial intelligence Radiomics Treatment progress
  • 相关文献

参考文献1

二级参考文献42

  • 1Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5:4006.
  • 2Egelmeer AG,Velazquez ER,de Jong JM, et al. Development and validation of a nomogram for prediction of survival and local control in laryngeal carcinoma patients treated with radiotherapy alone: a cohort study based on 994 patients [J]. Radiother Oncol, 2011, 100 ( 1 ) :108-115.
  • 3Valentini V, Lambin P, Myerson RJ. Is it time for tailored treatment of rectal cancer? From prescribing by consensus to prescribing by numbers[ J]. Radiother Oncol, 2012, 102 ( 1 ) : 1- 3.
  • 4Jaffe CC. Measures of response: RECIST, WHO, and new alternatives [ J ]. J Clin Oncol, 2006, 24 (20) : 3245-3251.
  • 5Burton A. REGIST: right time to renovate? [ J]. Eur J Cancer, 2007, 43(11) :1642.
  • 6Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4) :441-446.
  • 7Burrell RA, McGranahan N, Bartek J, et al. The causes and consequences of genetic heterogeneity in cancer evolution [ J ]. Nature, 2013, 501 (7467) :338-345.
  • 8Gatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution and ecology [ J ]. Radiology,2013, 269 ( 1 ) : 8-15.
  • 9Tebbit CL, Zhai J, Untch BR, et al. Novel tumor sampling strategies to enable microarray gene expression signatures in breast cancer:a study to determine feasibility and reproducibility in the context of clinical care [ J ]. Breast Cancer Res Treat, 2009,118 (3) :635-643.
  • 10Yamamoto S, Korn RL, Oklu R, et al. ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization [Jl. Radiology, 2014, 272(2):568-576.

共引文献56

同被引文献43

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部