期刊文献+

基于HSV颜色空间和局部纹理的阴影消除算法研究 被引量:16

Research on shadow elimination algorithm based on HSV color space and local texture
下载PDF
导出
摘要 阴影消除目前在各类视频监控预处理阶段中阴影消除技术得到了极其广泛的应用,这一技术能够有效应对视觉背景提取运动目标检测算法的阴影问题,基于阴影消除技术提出了一种根据阴影颜色和纹理特征的阴影消除算法。本算法首先根据HSV颜色空间色度与明度信息来进行阴影判别,确定候选运动目标区域,并计算出以颜色信息为依据的运动目标阴影检测结果;再引入LBP算子对候选运动目标区域纹理信息进行提取,对比其与背景区域的纹理差异,得出以纹理特征为依据的运动目标阴影检测结果;最后合并上述两种结果,并对其进行逻辑运算融合,实现两者在阴影检测上的优势互补,得出最终准确结果。实验结果显示,基于融合颜色与纹理特征的阴影消除算法可实现对运动目标阴影区域的准确消除,无论是误检率还是漏检率都比平常方法更低。 At present, shadow elimination technology has been widely used in all kinds of video surveillance preprocessing stage. This technology can effectively deal with the shadow problem of visual background extraction moving target detection algorithm. Based on the shadow elimination technology, proposes a shadow elimination algorithm based on shadow color and texture features. This algorithm firstly makes shadow discrimination based on the chromaticity and brightness information of HSV color space, determines the candidate moving target region, and calculates the moving target shadow detection result based on the color information. Then, LBP operator is introduced to extract the texture information of the candidate moving target region, and the texture difference between the candidate moving target region and the background region is compared. Finally, the above two results are combined and combined with logical operation to realize their complementary advantages in shadow detection and get the final accurate result. The experimental results show that the shadow elimination algorithm based on the fusion of color and texture features can accurately eliminate the shadow region of the moving target, and the false detection rate or missing detection rate is lower than the usual method.
作者 龙浩 李庆党 张明月 Long Hao;Li Qingdang;Zhang Mingyue(School of Automation and Electronic Engineering,Qingdao University of Science and Technology.Qingdao 266061,China;Sino-German Institute of Economic Engineering,Qingdao University of Science and Technology,Qingdao 266061,China)
出处 《电子测量技术》 2020年第18期81-87,共7页 Electronic Measurement Technology
基金 山东省重点研发计划项目(2017CXGC0607)资助。
关键词 运动目标检测 ViBe算法 阴影消除 HSV颜色空间 LBP算子 moving target detection ViBe algorithm shadow elimination HSV color space LBP operator
  • 相关文献

参考文献7

二级参考文献65

  • 1张鹏,王润生.静态图像中的感兴趣区域检测技术[J].中国图象图形学报(A辑),2005,10(2):142-148. 被引量:32
  • 2崔昌华,朱敏琛.基于肤色HSV颜色模型下的人脸实时检测与跟踪[J].福州大学学报(自然科学版),2006,34(6):826-830. 被引量:7
  • 3HUANG CH Q, YUAN G W,XU D. Multi-targetdetection and tracking by Gaussian mixture model andblob tracking analysis [J]. Journal of Information &Computational Science, 2009,6(6): 2403-2410.
  • 4STAUFFER C,GRIMSON W E. Adaptive backgroundmixture models for real-time tracking[C]. In:Proceedingsof IEEE Computer Society Conference on ComputerVision and Pattern Recognitioru Fort Collins, USA:IEEE, 1999:246-252.
  • 5HEIKKILA M, PIETIKAINEN M. A texture-basedmethod for modeling the background and detectingmoving objects [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,2006? 28 (4):657-662.
  • 6AHONEN T,MATAS J,HE C,et al. Rotation invariantimage description with local binary pattern histogramFourier features. In: Image Analysis [C]. SCIA 2009Proceedings?Lecture Notes in Computer Science 5575,2009:61-70.
  • 7GONZALEZ R C,WOODS R E. Digital imageprocessing[M]. 2nd Edition,Prentice Hall,2002.
  • 8Prati A, Mikic I, Trivedi M M, et al. Detecting moving shadows., algorithms and evaluation [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7): 918.
  • 9Cucchiara R, Grana C, Piccardi M, et al. Detecting moving objects, ghosts, and shadows in video streams[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10) : 1337.
  • 10Salvador E, Cavallaro A, Ebrahimi T. Cast shadowsegmentation using invariant color features [J].Computer Vision and Image Understanding, 2004, 95(2) : 238.

共引文献56

同被引文献162

引证文献16

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部