摘要
Tooth enamel is prone to be attacked by injurious factors,leading to a de/remineralization imbalance.To repair demineralized enamel and prevent pulp inflammation caused by biofilm accumulation,measures are needed to promote remineralization and inhibit bacterial adhesion on the tooth surface.An innovative material,poly(aspartic acid)-polyethylene glycol(PASP-PEG),was designed and synthesized to construct a mineralizing and anti-adhesive surface that could be applied to repair demineralized enamel.A cytotoxicity assay revealed the low cytotoxicity of synthesized PASP-PEG.Adsorption results demonstrated that PASPPEG possesses a high binding affinity to the hydroxyapatite(HA)/tooth surface.In vitro experiments and scanning electron microscopy(SEM)demonstrated a strong capacity of PASP-PEG to induce in situ remineralization and direct the oriented growth of apatite nanocrystals.Energy dispersive X-ray spectroscopy(EDS),X-ray diffraction analysis(XRD)and Vickers hardness tests demonstrated that minerals induced by PASP-PEG were consistent with healthy enamel in Ca/P ratio,crystal form and surface micro-hardness.Contact angle tests and bacterial adhesion experiments demonstrated that PASP-PEG yielded a strong antiadhesive effect.In summary,PASP-PEG could achieve dual effects for enamel repair and anti-adhesion of bacteria,thereby widening its application in enamel repair.
基金
This work was supported by the National Natural Science Foundation of China(81670977 and 51903169)
Sichuan Province Science and Technology Support Program(2017SZ0030)
China Postdoctoral Science Foundation(2019M663529)
Special Funding of State Key Laboratory of Oral Diseases(SKLOD202019)
Postdoctoral Cross Funding of Sichuan University(0040304153059)
Research Funding for talents developing,West China Hospital of Stomatology,Sichuan University(RCDWJS2020-17).