期刊文献+

带有时间周期色散和时间变化损耗或增益的随机Schrodinger方程

On Stochastic Schrodinger Equation with Time-periodic Dispersion and Time-varying Loss/gain
原文传递
导出
摘要 本文考虑了一类在非线性光学中出现的带有时间周期色散和时间变化损耗或增益的随机非线性Schrodinger方程idu+1/εm(t/ε2)■xxudt+ν(t/ε)+■xxudt+λ|u|^2σudt+iεa(t)udt=0.我们首先修正了de Bouard和Debussche的文献[J.Funct.Anal.,2010,259(5):1300-1321]中建立的Strichartz型估计,然后利用它们证明了含有白噪声色散的随机Schrodinger方程的局部适定性.该随机方程是原方程的极限模型.最后,当参数ε→0时,在一维空间中证明了原方程解的局部渐近收敛性. This paper is concerned with a stochastic nonlinear Schrodinger equation including deterministic time-periodic dispersion and time-varying loss/gain:id u+1/εm(t/ε2)■xxudt+ν(t/ε)■xxudt+λ|u|^2σudt+iεa(t)udt=0,which appears in nonlinear fibre optics.We first modify the Strichartz-type estimates established by de Bouard and Debussche[J.Funct.Anal.,2010,259(5):1300-1321],and then apply them to prove the local well-posedness for a stochastic Schrodinger equation with white noise dispersion,which is the limit model of the original equation.Finally,we demonstrate the local asymptotic convergence of solution for the original equation asε→0 in one space dimension.
作者 简慧 JIAN Hui(School of Science,East China Jiaotong University,Nangchang,Jiangxi,330013,P.R.China)
出处 《数学进展》 CSCD 北大核心 2020年第6期693-712,共20页 Advances in Mathematics(China)
基金 Supported by NSFC(No.11761032)。
关键词 随机非线性Schrodinger方程 随机和时间周期色散 时变损耗或增益 STRICHARTZ估计 非线性光学 stochastic nonlinear Schrodinger equation random and time-periodic dispersion time-varying loss/gain Strichartz estimate nonlinear fibre optics
  • 相关文献

参考文献1

二级参考文献19

  • 1Bang, O., Christiansen, P.L., Rasmussen, K.O. and Gaididei, Y.B., Temperature effects in a nonlinear model of monolayer Scheibe aggregates, Phys. Rev. E., 1994, 49: 4627-4636.
  • 2Bang, O., Christiansen, P.L., Rasmussen, K.O. and Gaididei, Y.B., White noise in the two-dimensional nonlinear Schrodinger equation, Appl. Anal., 1995, 57: 3-15.
  • 3Falkovich, G.E. , Kolokolov, I., Lebedev, V. and Turitsyn, S.K., Statistics of soliton-bearing systems with additive noise, Phys. Rev. E, 2001, 63.
  • 4Konotop, V. and Vazquez, L., Nonlinear Random Waves, World Scientific Publishing Co., Inc.: River Edge, NJ,1994.
  • 5Ueda, T. and Kath, W.L., Dynamics of optical pulse in randomly birefrengent fibers, Physica D, 1992, 55: 166-181.
  • 6de Bouard, A. and Debussche, A., The stochastic nonlinear SchrSdinger equation in H^1, Stochastic Analysis and Application, 2003, 21(1): 97-126.
  • 7de Bouard, A. and Debussche, A., Blow-up for the stochastic nonlinear Schrodinger equation with multi- plcative noise, The Annals of Probability, 2005, 33(3): 1078-1110.
  • 8de Bouard, A. and Debussche, A., A stochastic nonlinear Schrodinger equation with multiplcative noise, Comm. Math. Phys., 1999, 205: 161-181.
  • 9de Bouard, A. and Debussche, A., On the effect of a noise on solutions of the focusing supercritical nonlinear Schrodinger equation, Probab. Theory Related Fields, 2002, 123: 6-96.
  • 10de Bouard, A. and Debussche, A., Finite time blow-up in the additive supercritical nonlinear SchrSdinger equation: The real noise case, Conmtemp. Math., 2002, 301: 183-194.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部