期刊文献+

高维空间上非线性抛物方程在非线性边界条件下解的爆破时间的下界

Lower Bound for the Blow-up Time of a Nonlinear Parabolic Equation under Nonlinear Boundary Conditions in High Dimensional Spaces
下载PDF
导出
摘要 研究了高维空间上非线性抛物方程在非线性边界条件下的解的爆破问题。通过构造一个能量表达式,运用微分不等式的方法,得到该能量方程所满足的微分不等式。然后通过积分得到了高维空间上当爆破发生时解在非线性边界条件下的爆破时间的下界。 and Applied Analysis,2014:1-9.[7]LIU Y,LUO S G,YE Y H.Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary conditions[J].Computers and Mathematics with Applications,2013,65(8):1194-1199.[8]LIU Z Q,FANG Z B.Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux[J].Discrete and Continuous Dynamical Systems-Series B,2016,21(10):3619-3635.[9]SHEN X H,DING J T.Blow-up phenomena in porous medium equation systems with nonlinear boundary conditions[J].Computers and Mathematics with Applications,2019,77(12):3250-3263.[10]LIU Y.Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions[J].Mathematical and Computer Modelling,2013,57(3/4):926-931.[11]CHEN W H,LIU Y.Lower bound for the blow up time for some nonlinear parabolic equations[J].Boundary Value Problems,2016(1):1-6.[12]TANG G S.Blow-up phenomena for a parabolic system with gradient nonlinearity under nonlinear boundary conditions[J].Computers and Mathematics with Applications,2017,74(3):360-368.[13]BREZIS H.Functional analysis,sobolev spaces and partial differential equations,in:Universitext[M].New York:Springer,2011:280-284.Lower Bound for the Blow-up Time of a Nonlinear Parabolic Equation under Nonlinear Boundary Conditions in High Dimensional SpacesOUYANG Bai-ping,LI Yuan-fei(College of Data Science,Huashang College Guangdong University of Finance&Economics,Guangzhou 511300,China)Abstract:The paper deals with the blow up phenomenon for the nonlinear parabolic equation under nonlinear boundary conditions in high dimensional spaces.An energy expression is constructed first and then a differential inequality that the energy expression satisfied is derived by using the technique of a differential inequality.Integrating the inequality,the lower bound for the blow up time of the solution under nonlinear boundary conditions is obtained when blow-up does really occur in high dimensional spaces.
作者 欧阳柏平 李远飞 OUYANG Bai-ping;LI Yuan-fei(College of Data Science,Huashang College Guangdong University of Finance & Economics,Guangzhou 511300,China)
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2020年第6期516-521,共6页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(61907010) 广东教育厅重点资助项目(2018KZDXM048) 广东财经大学华商学院校内资助项目(2020HSDS01)。
关键词 爆破时间 非线性边界条件 下界 非线性抛物方程 高维空间 blow-up time nonlinear boundary condition lower bound nonlinear parabolic equation high dimensional space
  • 相关文献

二级参考文献2

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部